WolframAlpha.com
WolframCloud.com
All Sites & Public Resources...
Products & Services
Wolfram|One
Mathematica
Wolfram|Alpha Notebook Edition
Finance Platform
System Modeler
Wolfram Player
Wolfram Engine
WolframScript
Enterprise Private Cloud
Application Server
Enterprise Mathematica
Wolfram|Alpha Appliance
Enterprise Solutions
Corporate Consulting
Technical Consulting
Wolfram|Alpha Business Solutions
Resource System
Data Repository
Neural Net Repository
Function Repository
Wolfram|Alpha
Wolfram|Alpha Pro
Problem Generator
API
Data Drop
Products for Education
Mobile Apps
Wolfram Player
Wolfram Cloud App
Wolfram|Alpha for Mobile
Wolfram|Alpha-Powered Apps
Services
Paid Project Support
Wolfram U
Summer Programs
All Products & Services »
Technologies
Wolfram Language
Revolutionary knowledge-based programming language.
Wolfram Cloud
Central infrastructure for Wolfram's cloud products & services.
Wolfram Science
Technology-enabling science of the computational universe.
Wolfram Notebooks
The preeminent environment for any technical workflows.
Wolfram Engine
Software engine implementing the Wolfram Language.
Wolfram Natural Language Understanding System
Knowledge-based broadly deployed natural language.
Wolfram Data Framework
Semantic framework for real-world data.
Wolfram Universal Deployment System
Instant deployment across cloud, desktop, mobile, and more.
Wolfram Knowledgebase
Curated computable knowledge powering Wolfram|Alpha.
All Technologies »
Solutions
Engineering, R&D
Aerospace & Defense
Chemical Engineering
Control Systems
Electrical Engineering
Image Processing
Industrial Engineering
Mechanical Engineering
Operations Research
More...
Finance, Statistics & Business Analysis
Actuarial Sciences
Bioinformatics
Data Science
Econometrics
Financial Risk Management
Statistics
More...
Education
All Solutions for Education
Trends
Machine Learning
Multiparadigm Data Science
Internet of Things
High-Performance Computing
Hackathons
Software & Web
Software Development
Authoring & Publishing
Interface Development
Web Development
Sciences
Astronomy
Biology
Chemistry
More...
All Solutions »
Learning & Support
Learning
Wolfram Language Documentation
Fast Introduction for Programmers
Wolfram U
Videos & Screencasts
Wolfram Language Introductory Book
Webinars & Training
Summer Programs
Books
Need Help?
Support FAQ
Wolfram Community
Contact Support
Premium Support
Paid Project Support
Technical Consulting
All Learning & Support »
Company
About
Company Background
Wolfram Blog
Events
Contact Us
Work with Us
Careers at Wolfram
Internships
Other Wolfram Language Jobs
Initiatives
Wolfram Foundation
MathWorld
Computer-Based Math
A New Kind of Science
Wolfram Technology for Hackathons
Student Ambassador Program
Wolfram for Startups
Demonstrations Project
Wolfram Innovator Awards
Wolfram + Raspberry Pi
Summer Programs
More...
All Company »
Search
WOLFRAM COMMUNITY
Connect with users of Wolfram technologies to learn, solve problems and share ideas
Join
Sign In
Dashboard
Groups
People
Message Boards
Answer
(
Unmark
)
Mark as an Answer
GROUPS:
Staff Picks
Wolfram Science
Computer Science
Graphics and Visualization
Graphs and Networks
Wolfram Language
Wolfram High School Summer Camp
4
Gooha Park
[WSC21] Turing machines with longer head-jumps and complexity
Gooha Park
Posted
1 year ago
2407 Views
|
3 Replies
|
8 Total Likes
Follow this post
|
Turing machines with longer head-jumps and complexity
by
Gooha Park
Introduction
Turing Machine is a rudimentary computational device developed by Alan Turing in 1936.
This computational essay will investigate Turing Machines with longer head-jumps and their relation to complexity. Various qualities and aspects of Turing Machines with Longer head jumps will be represented through extensive visualizations. Ultimately, the essay will attempt to argue that Turing Machines with longer head-jumps are capable of displaying complex behavior.
Introduction to Turing Machines
T
h
e
T
u
r
i
n
g
m
a
c
h
i
n
e
c
o
n
s
i
s
t
s
o
f
a
n
a
p
p
a
r
a
t
u
s
c
a
l
l
e
d
a
“
H
e
a
d
”
w
h
i
c
h
i
s
c
a
p
a
b
l
e
o
f
r
e
a
d
i
n
g
a
n
d
w
r
i
t
i
n
g
c
h
a
r
a
c
t
e
r
s
.
P
r
i
o
r
t
o
f
u
n
c
t
i
o
n
i
n
g
,
a
s
y
s
t
e
m
a
t
i
c
r
u
l
e
i
s
e
n
c
o
d
e
d
i
n
s
i
d
e
t
h
e
T
u
r
i
n
g
m
a
c
h
i
n
e
a
n
d
t
h
e
m
a
c
h
i
n
e
i
s
p
l
a
c
e
d
o
n
a
l
i
n
e
a
r
t
a
p
e
.
W
h
e
n
t
h
e
m
a
c
h
i
n
e
i
s
p
l
a
c
e
d
o
n
t
h
e
t
a
p
e
,
t
h
e
"
H
e
a
d
"
s
t
a
r
t
s
m
o
v
i
n
g
o
n
a
l
i
n
e
a
r
t
a
p
e
a
n
d
f
i
l
l
s
t
h
e
t
a
p
e
w
i
t
h
c
h
a
r
a
c
t
e
r
s
Show the Rules For a Given Turing Machine:
I
n
[
]
:
=
R
u
l
e
P
l
o
t
[
T
u
r
i
n
g
M
a
c
h
i
n
e
[
2
5
0
6
]
]
O
u
t
[
]
=
L
o
o
k
i
n
g
a
b
o
v
e
,
o
n
e
w
i
l
l
b
e
a
b
l
e
t
o
s
e
e
t
h
e
r
u
l
e
s
t
h
a
t
d
e
f
i
n
e
a
T
u
r
i
n
g
M
a
c
h
i
n
e
.
I
n
t
h
e
w
o
l
f
r
a
m
l
a
n
g
u
a
g
e
,
4
e
l
e
m
e
n
t
s
c
o
n
s
i
s
t
t
o
d
e
f
i
n
e
a
d
i
s
t
i
n
c
t
r
u
l
e
f
o
r
a
T
u
r
i
n
g
M
a
c
h
i
n
e
:
c
o
l
o
r
s
,
s
t
a
t
e
,
d
i
s
p
l
a
c
e
m
e
n
t
,
a
n
d
t
h
e
r
u
l
e
n
u
m
b
e
r
.
T
h
e
f
i
r
s
t
e
l
e
m
e
n
t
i
s
i
t
s
p
o
s
s
i
b
l
e
h
e
a
d
-
s
t
a
t
e
s
.
T
h
e
h
e
a
d
-
s
t
a
t
e
i
s
d
e
s
c
r
i
b
e
d
b
y
t
h
e
d
i
r
e
c
t
i
o
n
o
f
t
h
e
b
l
a
c
k
p
o
i
n
t
e
r
.
L
o
o
k
i
n
g
a
t
t
h
e
d
i
a
g
r
a
m
,
c
l
e
a
r
l
y
t
h
e
r
e
a
r
e
o
n
l
y
t
w
o
h
e
a
d
s
t
a
t
e
s
:
u
p
a
n
d
d
o
w
n
.
T
h
e
s
e
c
o
n
d
e
l
e
m
e
n
t
i
s
t
h
e
t
o
t
a
l
n
u
m
b
e
r
o
f
c
o
l
o
r
.
I
n
t
h
e
W
o
l
f
r
a
m
L
a
n
g
u
a
g
e
,
i
n
s
t
e
a
d
o
f
i
n
p
u
t
t
i
n
g
c
h
a
r
a
c
t
e
r
s
o
n
a
l
i
n
e
a
r
t
a
p
e
,
c
o
l
o
r
s
a
r
e
e
n
c
o
d
e
d
o
n
t
h
e
t
a
p
e
.
I
n
t
h
e
e
x
a
m
p
l
e
,
t
h
e
r
e
a
r
e
t
w
o
c
o
l
o
r
s
:
w
h
i
t
e
a
n
d
o
r
a
n
g
e
.
T
h
e
t
h
i
r
d
e
l
e
m
e
n
t
i
s
t
h
e
d
i
s
p
l
a
c
e
m
e
n
t
,
a
t
e
r
m
i
n
o
l
o
g
y
d
e
n
o
t
i
n
g
t
h
e
h
e
a
d
m
o
v
e
m
e
n
t
o
f
t
h
e
m
a
c
h
i
n
e
.
I
n
t
h
e
R
u
l
e
P
l
o
t
a
b
o
v
e
,
a
s
t
h
e
T
u
r
i
n
g
M
a
c
h
i
n
e
m
o
v
e
s
t
o
i
t
s
n
e
x
t
s
t
a
g
e
,
t
h
e
h
e
a
d
e
i
t
h
e
r
m
o
v
e
s
o
n
e
t
o
t
h
e
l
e
f
t
o
r
r
i
g
h
t
:
t
h
u
s
t
h
e
d
i
s
p
l
a
c
e
m
e
n
t
o
f
t
h
i
s
p
a
r
t
i
c
u
l
a
r
T
u
r
i
n
g
M
a
c
h
i
n
e
i
s
o
n
e
.
I
f
a
l
l
t
h
r
e
e
e
l
e
m
e
n
t
s
a
r
e
s
p
e
c
i
f
i
e
d
,
a
t
o
t
a
l
o
f
(
2
*
s
t
a
t
e
*
c
o
l
o
r
*
d
i
s
p
l
a
c
e
m
e
n
t
)
^
(
s
t
a
t
e
*
c
o
l
o
r
)
d
i
s
t
i
n
c
t
r
u
l
e
s
c
a
n
b
e
m
a
d
e
.
E
a
c
h
r
u
l
e
g
i
v
e
s
a
d
i
f
f
e
r
e
n
t
c
o
m
b
i
n
a
t
i
o
n
o
f
c
o
l
o
r
s
,
s
t
a
t
e
s
a
n
d
d
i
s
p
l
a
c
e
m
e
n
t
.
Diagram for a Turing Machine after 60 evolutions:
I
n
[
]
:
=
R
u
l
e
P
l
o
t
[
T
u
r
i
n
g
M
a
c
h
i
n
e
[
2
5
0
6
]
,
{
1
,
{
{
}
,
0
}
}
,
6
0
]
O
u
t
[
]
=
T
h
e
e
x
p
l
a
n
a
t
i
o
n
a
b
o
v
e
m
i
g
h
t
b
e
d
a
u
n
t
i
n
g
i
f
o
n
e
h
a
s
n
e
v
e
r
s
e
e
n
t
h
e
o
p
e
r
a
t
i
o
n
o
f
a
T
u
r
i
n
g
M
a
c
h
i
n
e
.
L
o
o
k
i
n
g
a
b
o
v
e
,
o
n
e
w
i
l
l
s
e
e
a
T
u
r
i
n
g
M
a
c
h
i
n
e
t
h
a
t
h
a
s
f
i
l
l
e
d
o
u
t
a
n
e
m
p
t
y
t
a
p
e
a
f
t
e
r
6
0
e
v
o
l
u
t
i
o
n
s
.
A
s
t
h
e
T
u
r
i
n
g
M
a
c
h
i
n
e
e
x
p
e
r
i
e
n
c
e
s
a
n
i
n
c
r
e
a
s
e
i
n
i
t
s
e
v
o
l
u
t
i
o
n
,
t
h
e
w
h
i
t
e
c
e
l
l
s
a
r
e
f
i
l
l
e
d
.
T
h
e
i
n
c
r
e
a
s
e
i
n
e
v
o
l
u
t
i
o
n
i
s
r
e
p
r
e
s
e
n
t
e
d
b
y
t
h
e
v
e
r
t
i
c
a
l
e
x
p
a
n
s
i
o
n
o
f
t
h
e
d
i
a
g
r
a
m
.
T
h
u
s
,
i
f
o
n
e
w
a
n
t
e
d
t
o
k
n
o
w
w
h
a
t
t
h
e
l
i
n
e
a
r
t
a
p
e
l
o
o
k
e
d
l
i
k
e
a
f
t
e
r
t
i
m
e
A
,
o
n
e
w
o
u
l
d
h
a
v
e
t
o
v
e
r
t
i
c
a
l
l
y
m
o
v
e
d
o
w
n
A
s
t
e
p
s
.
A
f
t
e
r
l
o
c
a
t
i
n
g
A
s
t
e
p
s
d
o
w
n
,
t
h
e
e
n
t
i
r
e
h
o
r
i
z
o
n
t
a
l
r
o
w
w
o
u
l
d
c
o
r
r
e
s
p
o
n
d
t
o
t
h
e
s
t
a
t
e
o
f
t
h
e
t
a
p
e
.
What is Complexity and why is it relevant to Turing Machines?
C
o
m
p
l
e
x
i
t
y
c
o
m
m
o
n
l
y
r
e
f
e
r
s
t
o
a
s
y
s
t
e
m
m
a
n
i
f
e
s
t
i
n
g
i
n
t
r
i
c
a
t
e
,
c
o
m
p
l
i
c
a
t
e
d
,
a
n
d
p
e
r
h
a
p
s
i
r
r
e
g
u
l
a
r
b
e
h
a
v
i
o
r
.
W
i
t
h
t
h
i
s
b
a
s
i
c
d
e
f
i
n
i
t
i
o
n
,
S
t
e
p
h
e
n
W
o
l
f
r
a
m
h
a
s
c
o
n
d
u
c
t
e
d
s
t
u
d
i
e
s
o
n
c
o
m
p
l
e
x
b
e
h
a
v
i
o
r
.
I
n
t
h
e
s
e
s
t
u
d
i
e
s
,
h
e
h
a
s
a
r
g
u
e
d
a
g
a
i
n
s
t
t
h
e
c
o
m
m
o
n
i
n
t
u
i
t
i
o
n
t
h
a
t
t
h
e
c
r
e
a
t
i
o
n
o
f
c
o
m
p
l
e
x
b
e
h
a
v
i
o
r
r
e
q
u
i
r
e
c
o
m
p
l
e
x
i
n
s
t
r
u
c
t
i
o
n
s
a
n
d
p
r
o
c
e
s
s
e
s
.
I
n
s
t
e
a
d
,
h
e
a
r
g
u
e
s
t
h
a
t
c
o
m
p
l
e
x
b
e
h
a
v
i
o
r
c
a
n
b
e
c
r
e
a
t
e
d
t
h
r
o
u
g
h
i
t
e
r
a
t
i
n
g
s
i
m
p
l
e
r
u
l
e
s
.
Show the Rules for CellularAutomaton Rule 30
I
n
[
]
:
=
R
u
l
e
P
l
o
t
[
C
e
l
l
u
l
a
r
A
u
t
o
m
a
t
o
n
[
3
0
]
]
O
u
t
[
]
=
Show the result of running this rule for 200 Iterations
I
n
[
]
:
=
A
r
r
a
y
P
l
o
t
[
C
e
l
l
u
l
a
r
A
u
t
o
m
a
t
o
n
[
3
0
,
{
{
1
}
,
0
}
,
2
0
0
]
,
I
m
a
g
e
S
i
z
e
7
5
0
]
O
u
t
[
]
=
T
h
e
i
m
a
g
e
a
b
o
v
e
s
h
o
w
s
t
h
e
r
e
s
u
l
t
o
f
r
e
p
e
a
t
i
n
g
c
e
l
l
u
l
a
r
a
u
t
o
m
a
t
o
n
3
0
f
o
r
6
0
0
i
t
e
r
a
t
i
o
n
s
.
I
h
o
p
e
w
e
c
a
n
a
l
l
a
g
r
e
e
t
h
a
t
t
h
e
p
a
t
t
e
r
n
d
i
s
p
l
a
y
e
d
a
b
o
v
e
i
s
p
r
o
f
o
u
n
d
l
y
c
o
m
p
l
e
x
.
I
n
t
e
r
e
s
t
i
n
g
l
y
,
t
h
e
r
u
l
e
s
t
h
a
t
c
o
n
s
t
i
t
u
t
e
t
h
i
s
p
a
t
t
e
r
n
i
s
q
u
i
t
e
s
i
m
p
l
e
.
I
n
t
h
a
t
l
i
g
h
t
,
I
h
o
p
e
w
e
c
a
n
s
e
e
t
h
e
c
o
n
n
e
c
t
i
o
n
b
e
t
w
e
e
n
T
u
r
i
n
g
M
a
c
h
i
n
e
s
a
n
d
c
o
m
p
l
e
x
b
e
h
a
v
i
o
r
.
L
i
k
e
c
e
l
l
u
l
a
r
a
u
t
o
m
a
t
o
n
,
T
u
r
i
n
g
m
a
c
h
i
n
e
s
o
p
e
r
a
t
e
o
n
v
e
r
y
b
a
s
i
c
r
u
l
e
s
t
h
a
t
m
a
n
i
p
u
l
a
t
e
i
t
s
m
o
v
e
m
e
n
t
.
T
h
e
g
r
e
a
t
e
r
s
i
g
n
i
f
i
c
a
n
c
e
i
s
t
h
a
t
w
h
e
n
w
e
o
b
s
e
r
v
e
t
h
e
p
a
t
t
e
r
n
p
l
o
t
t
e
d
b
y
T
u
r
i
n
g
m
a
c
h
i
n
e
s
o
v
e
r
l
o
n
g
p
e
r
i
o
d
s
o
f
t
i
m
e
,
T
r
u
i
n
g
M
a
c
h
i
n
e
s
a
r
e
a
l
s
o
c
a
p
a
b
l
e
o
f
d
e
m
o
n
s
t
r
a
t
i
n
g
c
o
m
p
l
e
x
b
e
h
a
v
i
o
r
.
Rules for a Turing Machine with a Rule Number of 596 440, 2 States, 3 Colors and a displacement of 1 and its final results
I
n
[
]
:
=
R
u
l
e
P
l
o
t
[
T
u
r
i
n
g
M
a
c
h
i
n
e
[
{
5
9
6
4
4
0
,
2
,
3
}
]
,
I
m
a
g
e
S
i
z
e
4
5
0
]
R
u
l
e
P
l
o
t
[
T
u
r
i
n
g
M
a
c
h
i
n
e
[
{
5
9
6
4
4
0
,
2
,
3
}
]
,
{
1
,
{
{
}
,
0
}
}
,
7
0
0
,
I
m
a
g
e
S
i
z
e
1
0
0
]
O
u
t
[
]
=
O
u
t
[
]
=
T
h
e
i
m
a
g
e
a
b
o
v
e
s
h
o
w
s
a
2
s
t
a
t
e
,
3
c
o
l
o
r
T
u
r
i
n
g
m
a
c
h
i
n
e
w
i
t
h
a
d
i
s
p
l
a
c
e
m
e
n
t
o
f
1
a
n
d
a
r
u
l
e
n
u
m
b
e
r
o
f
5
9
6
,
4
4
0
.
T
h
e
c
o
r
e
c
o
n
s
t
i
t
u
e
n
t
s
o
f
t
h
i
s
T
u
r
i
n
g
M
a
c
h
i
n
e
a
r
e
6
s
i
m
p
l
e
r
u
l
e
s
.
Y
e
t
,
f
r
o
m
t
h
e
s
e
s
i
m
p
l
e
p
a
t
t
e
r
n
s
,
w
e
c
a
n
c
r
e
a
t
e
c
o
m
p
l
e
x
a
n
d
i
n
t
e
r
e
s
t
i
n
g
p
a
t
t
e
r
n
s
.
Turing Machines with Greater Head Jumps
W
h
e
n
w
e
l
o
o
k
a
t
e
x
i
s
t
i
n
g
s
t
u
d
i
e
s
o
n
t
h
e
b
e
h
a
v
i
o
r
o
f
T
u
r
i
n
g
M
a
c
h
i
n
e
s
-
a
t
l
e
a
s
t
t
h
o
s
e
c
o
n
c
e
r
n
i
n
g
t
h
e
n
o
t
i
o
n
o
f
c
o
m
p
l
e
x
i
t
y
-
t
h
e
r
e
h
a
s
b
e
e
n
s
c
a
r
c
e
e
f
f
o
r
t
t
o
a
n
a
l
y
z
e
m
a
c
h
i
n
e
s
w
i
t
h
d
i
s
p
l
a
c
e
m
e
n
t
s
l
a
r
g
e
r
t
h
a
n
o
n
e
.
T
o
v
i
s
u
a
l
i
z
e
t
h
e
b
e
h
a
v
i
o
r
a
l
p
a
t
t
e
r
n
o
f
T
u
r
i
n
g
m
a
c
h
i
n
e
s
w
i
t
h
g
r
e
a
t
e
r
h
e
a
d
-
j
u
m
p
s
,
l
e
t
u
s
l
o
o
k
a
t
a
r
u
l
e
f
o
r
a
T
u
r
i
n
g
m
a
c
h
i
n
e
w
i
t
h
d
i
s
p
l
a
c
e
m
e
n
t
o
f
1
.
RulePlot for a standard Turing Machine with a Rule number of 2506, 2 colors, 2 states, and a displacement of 1
I
n
[
]
:
=
R
u
l
e
P
l
o
t
[
T
u
r
i
n
g
M
a
c
h
i
n
e
[
2
5
0
6
]
]
O
u
t
[
]
=
I
n
t
h
i
s
e
x
a
m
p
l
e
,
t
h
e
T
u
r
i
n
g
m
a
c
h
i
n
e
c
l
e
a
r
l
y
h
a
s
a
d
i
s
p
l
a
c
e
m
e
n
t
o
f
1
.
F
o
r
t
h
i
s
r
u
l
e
t
o
q
u
a
l
i
f
y
a
s
a
T
u
r
i
n
g
m
a
c
h
i
n
e
w
i
t
h
g
r
e
a
t
e
r
h
e
a
d
-
j
u
m
p
s
,
t
h
e
d
i
s
p
l
a
c
e
m
e
n
t
o
f
t
h
e
T
u
r
i
n
g
m
a
c
h
i
n
e
s
w
o
u
l
d
h
a
v
e
t
o
h
a
v
e
a
b
s
o
l
u
t
e
v
a
l
u
e
s
g
r
e
a
t
e
r
t
h
a
n
o
n
e
.
Custom Modeling Turing Machines with Greater Head-Jumps
A
s
I
w
a
s
a
n
a
l
y
z
i
n
g
T
u
r
i
n
g
M
a
c
h
i
n
e
s
w
i
t
h
g
r
e
a
t
e
r
h
e
a
d
-
j
u
m
p
s
,
I
e
n
c
o
u
n
t
e
r
e
d
a
m
a
j
o
r
i
s
s
u
e
:
t
h
e
f
u
n
c
t
i
o
n
R
u
l
e
P
l
o
t
d
i
d
n
o
t
r
e
t
u
r
n
a
v
i
s
u
a
l
i
z
a
t
i
o
n
o
f
t
h
e
r
u
l
e
s
.
I
d
e
e
m
e
d
t
h
i
s
p
r
o
b
l
e
m
a
t
i
c
b
e
c
a
u
s
e
i
t
s
e
e
m
e
d
q
u
e
e
r
t
o
s
t
a
r
t
a
n
a
l
y
z
i
n
g
T
u
r
i
n
g
M
a
c
h
i
n
e
s
w
i
t
h
o
u
t
k
n
o
w
i
n
g
t
h
e
i
r
f
u
n
d
a
m
e
n
t
a
l
r
u
l
e
s
.
T
h
u
s
,
I
d
e
c
i
d
e
d
t
o
c
r
e
a
t
e
a
c
u
s
t
o
m
v
i
s
u
a
l
i
z
a
t
i
o
n
w
h
i
c
h
w
o
u
l
d
f
o
l
l
o
w
a
s
i
m
i
l
a
r
f
o
r
m
a
t
t
o
t
h
e
R
u
l
e
-
P
l
o
t
f
u
n
c
t
i
o
n
.
Generate a list that encodes the vital information of a Turing Machine
O
R
G
l
i
s
t
T
u
r
i
n
g
[
t
n
u
m
_
I
n
t
e
g
e
r
,
s
t
_
I
n
t
e
g
e
r
,
C
I
_
I
n
t
e
g
e
r
,
D
x
_
I
n
t
e
g
e
r
,
R
p
_
I
n
t
e
g
e
r
]
:
=
F
l
a
t
t
e
n
[
T
u
r
i
n
g
M
a
c
h
i
n
e
[
{
t
n
u
m
,
s
t
,
C
I
,
D
x
}
,
{
1
,
{
{
}
,
0
}
}
,
R
p
*
3
]
,
1
]
T
h
e
f
i
r
s
t
s
t
e
p
o
f
t
h
e
p
r
o
c
e
s
s
w
a
s
c
r
e
a
t
i
n
g
a
f
u
n
c
t
i
o
n
t
h
a
t
p
r
o
d
u
c
e
d
t
h
e
m
o
s
t
s
t
a
n
d
a
r
d
i
n
f
o
r
m
a
t
i
o
n
o
f
a
T
u
r
i
n
g
M
a
c
h
i
n
e
:
i
t
s
c
u
r
r
e
n
t
s
t
a
t
e
,
p
o
s
i
t
i
o
n
o
f
t
h
e
h
e
a
d
,
a
n
d
t
h
e
v
a
l
u
e
s
t
h
a
t
a
r
e
e
n
c
o
d
e
d
o
n
t
h
e
l
i
n
e
a
r
t
a
p
e
.
I
n
[
]
:
=
O
R
G
l
i
s
t
T
u
r
i
n
g
[
2
5
0
6
,
2
,
2
,
1
,
5
]
/
/
S
h
o
r
t
O
u
t
[
]
/
/
S
h
o
r
t
=
{
{
1
,
4
,
0
}
,
{
0
,
0
,
0
,
0
,
0
,
0
,
0
}
,
{
2
,
5
,
1
}
,
{
0
,
0
,
0
,
1
,
0
,
0
,
0
}
,
2
4
,
{
1
,
2
,
-
2
}
,
{
0
,
1
,
1
,
0
,
1
,
0
,
1
}
,
{
2
,
1
,
-
3
}
,
{
0
,
0
,
1
,
0
,
1
,
0
,
1
}
}
T
o
i
l
l
u
s
t
r
a
t
e
i
t
s
r
o
l
e
,
I
r
a
n
t
h
e
f
u
n
c
t
i
o
n
t
o
s
e
e
w
h
a
t
a
T
u
r
i
n
g
M
a
c
h
i
n
e
w
i
t
h
2
c
o
l
o
r
s
,
2
s
t
a
t
e
s
,
d
i
s
p
l
a
c
e
m
e
n
t
o
f
1
,
a
n
d
a
r
u
l
e
n
u
m
b
e
r
o
f
2
5
0
6
w
o
u
l
d
p
r
o
d
u
c
e
f
o
r
5
e
v
o
l
u
t
i
o
n
s
.
A
l
t
h
o
u
g
h
t
h
i
s
i
n
f
o
r
m
a
t
i
o
n
w
a
s
n
'
t
e
x
a
c
t
l
y
w
h
a
t
I
n
e
e
d
e
d
t
o
v
i
s
u
a
l
i
z
e
t
h
e
r
u
l
e
s
o
f
t
h
e
T
u
r
i
n
g
m
a
c
h
i
n
e
,
i
t
p
r
o
v
i
d
e
d
a
g
o
o
d
s
o
u
r
c
e
m
a
t
e
r
i
a
l
t
o
p
r
o
d
u
c
e
w
h
a
t
I
n
e
e
d
e
d
.
A
f
t
e
r
o
b
t
a
i
n
i
n
g
t
h
e
“
r
a
w
d
a
t
a
”
o
f
t
h
e
T
u
r
i
n
g
m
a
c
h
i
n
e
,
I
u
s
e
d
t
h
e
“
O
R
G
R
u
l
e
P
l
o
t
”
f
u
n
c
t
i
o
n
t
o
e
x
t
r
a
c
t
t
h
e
d
a
t
a
I
n
e
e
d
e
d
.
Extract Key information from the list above: head state, displacement, color
O
R
G
R
u
l
e
P
l
o
t
[
i
n
d
_
I
n
t
e
g
e
r
,
l
s
t
_
L
i
s
t
]
:
=
D
e
l
e
t
e
D
u
p
l
i
c
a
t
e
s
[
T
a
b
l
e
[
I
f
[
j
=
=
1
,
l
s
t
[
[
2
*
i
-
1
,
1
]
]
,
I
f
[
j
=
=
2
,
l
s
t
[
[
2
*
i
+
1
,
1
]
]
,
I
f
[
j
=
=
3
,
l
s
t
[
[
2
*
i
+
1
,
3
]
]
-
l
s
t
[
[
2
*
i
-
1
,
3
]
]
,
I
f
[
j
=
=
4
,
I
f
[
i
=
=
1
,
0
,
l
s
t
[
[
2
*
i
,
l
s
t
[
[
2
*
i
-
1
,
2
]
]
]
]
]
,
I
f
[
j
=
=
5
,
l
s
t
[
[
2
*
i
+
2
,
l
s
t
[
[
2
*
i
-
1
,
2
]
]
]
]
,
0
]
]
]
]
]
,
{
i
,
i
n
d
}
,
{
j
,
5
}
]
]
T
h
e
"
O
R
G
R
u
l
e
P
l
o
t
"
f
u
n
c
t
i
o
n
f
i
r
s
t
r
e
c
e
i
v
e
s
t
h
e
b
a
s
i
c
d
a
t
a
g
e
n
e
r
a
t
e
d
f
r
o
m
t
h
e
O
R
G
l
i
s
t
T
u
r
i
n
g
f
u
n
c
t
i
o
n
.
T
h
e
n
,
t
h
e
f
u
n
c
t
i
o
n
c
r
e
a
t
e
s
a
s
u
b
l
i
s
t
w
i
t
h
5
e
l
e
m
e
n
t
s
f
o
r
e
v
e
r
y
e
v
o
l
u
t
i
o
n
t
h
e
T
u
r
i
n
g
M
a
c
h
i
n
e
g
o
e
s
t
h
r
o
u
g
h
.
T
h
e
f
i
v
e
e
l
e
m
e
n
t
s
o
f
t
h
e
O
R
G
R
u
l
e
P
l
o
t
f
u
n
c
t
i
o
n
f
o
l
l
o
w
s
t
h
e
o
r
d
e
r
o
f
(
o
r
i
g
i
n
a
l
h
e
a
d
s
t
a
t
e
,
n
e
x
t
h
e
a
d
s
t
a
t
e
,
d
i
s
p
l
a
c
e
m
e
n
t
,
o
r
i
g
i
n
a
l
v
a
l
u
e
o
n
t
h
e
t
a
p
e
,
a
n
d
t
h
e
s
e
c
o
n
d
v
a
l
u
e
e
n
c
o
d
e
d
o
n
t
h
e
t
a
p
e
)
.
D
e
p
e
n
d
i
n
g
o
n
w
h
a
t
t
h
e
u
s
e
r
s
p
e
c
i
f
i
e
s
f
o
r
t
h
e
i
n
d
v
a
r
i
a
b
l
e
o
f
t
h
e
f
u
n
c
t
i
o
n
,
t
h
e
f
u
n
c
t
i
o
n
f
i
n
d
s
t
h
e
r
u
l
e
f
o
r
i
n
d
e
v
o
l
u
t
i
o
n
s
.
S
i
n
c
e
t
h
e
r
u
l
e
s
o
f
T
u
r
i
n
g
M
a
c
h
i
n
e
s
a
r
e
i
n
a
c
l
o
s
u
r
e
,
-
t
h
e
T
u
r
i
n
g
M
a
c
h
i
n
e
c
a
n
n
o
t
e
x
c
e
e
d
a
c
e
r
t
a
i
n
s
e
t
o
f
r
u
l
e
s
-
i
f
t
h
e
f
u
n
c
t
i
o
n
i
s
c
o
m
p
u
t
e
d
f
o
r
a
s
u
f
f
i
c
i
e
n
t
e
v
o
l
u
t
i
o
n
,
t
h
e
"
D
e
l
e
t
e
D
u
p
l
i
c
a
t
e
"
f
u
n
c
t
i
o
n
i
s
a
b
l
e
t
o
f
i
n
d
a
l
l
t
h
e
d
i
s
t
i
n
c
t
r
u
l
e
s
.
Use the extracted data to create a custom RulePlot
p
l
o
t
T
M
[
r
e
f
l
i
s
t
_
L
i
s
t
]
:
=
T
a
b
l
e
[
{
G
r
i
d
[
T
a
b
l
e
[
I
f
[
i
=
=
1
,
I
t
e
m
[
r
e
f
l
i
s
t
[
[
k
,
1
]
]
,
B
a
c
k
g
r
o
u
n
d
I
f
[
r
e
f
l
i
s
t
[
[
k
,
4
]
]
=
=
0
,
W
h
i
t
e
,
I
f
[
r
e
f
l
i
s
t
[
[
k
,
4
]
]
=
=
1
,
O
r
a
n
g
e
,
I
f
[
r
e
f
l
i
s
t
[
[
k
,
4
]
]
=
=
2
,
G
r
e
e
n
]
,
I
f
[
r
e
f
l
i
s
t
[
[
k
,
4
]
]
=
=
3
,
B
l
u
e
]
]
]
]
,
I
f
[
i
=
=
2
,
I
t
e
m
[
r
e
f
l
i
s
t
[
[
k
,
2
]
]
,
B
a
c
k
g
r
o
u
n
d
I
f
[
r
e
f
l
i
s
t
[
[
k
,
5
]
]
=
=
0
,
W
h
i
t
e
,
I
f
[
r
e
f
l
i
s
t
[
[
k
,
5
]
]
=
=
1
,
O
r
a
n
g
e
,
I
f
[
r
e
f
l
i
s
t
[
[
k
,
5
]
]
=
=
2
,
G
r
e
e
n
]
,
I
f
[
r
e
f
l
i
s
t
[
[
k
,
5
]
]
=
=
3
,
B
l
u
e
]
]
]
]
,
0
]
]
,
{
i
,
2
}
,
{
j
,
1
}
]
,
F
r
a
m
e
-
>
A
l
l
]
,
N
u
m
b
e
r
L
i
n
e
P
l
o
t
[
I
n
t
e
r
v
a
l
[
{
0
,
r
e
f
l
i
s
t
[
[
k
,
3
]
]
}
]
]
}
,
{
k
,
1
,
L
e
n
g
t
h
[
r
e
f
l
i
s
t
]
}
]
;
W
i
t
h
t
h
e
i
n
f
o
r
m
a
t
i
o
n
p
r
o
v
i
d
e
d
b
y
t
h
e
"
O
R
G
R
u
l
e
P
l
o
t
"
f
u
n
c
t
i
o
n
,
t
h
e
"
p
l
o
t
T
M
"
f
u
n
c
t
i
o
n
r
e
t
u
r
n
s
a
c
u
s
t
o
m
v
i
s
u
a
l
i
z
a
t
i
o
n
.
S
i
n
c
e
t
h
e
O
R
G
R
u
l
e
P
l
o
t
f
u
n
c
t
i
o
n
r
e
t
u
r
n
s
t
h
e
2
h
e
a
d
s
t
a
t
e
s
,
2
v
a
l
u
e
s
o
n
t
h
e
l
i
n
e
a
r
t
a
p
e
,
a
n
d
t
h
e
d
i
s
p
l
a
c
e
m
e
n
t
,
t
h
e
r
e
m
a
i
n
i
n
g
j
o
b
w
a
s
t
o
s
e
n
s
i
b
l
y
v
i
s
u
a
l
i
z
e
t
h
e
d
a
t
a
.
I
n
t
h
e
c
u
s
t
o
m
v
i
s
u
a
l
i
z
a
t
i
o
n
,
t
h
e
r
e
a
r
e
t
w
o
c
e
l
l
s
v
e
r
t
i
c
a
l
l
y
s
t
a
c
k
e
d
a
n
d
e
a
c
h
c
e
l
l
c
o
n
t
a
i
n
e
d
a
n
u
m
b
e
r
a
n
d
a
c
o
l
o
r
.
T
h
e
n
u
m
b
e
r
r
e
p
r
e
s
e
n
t
e
d
t
h
e
h
e
a
d
s
t
a
t
e
a
n
d
w
h
i
l
e
t
h
e
c
o
l
o
r
r
e
p
r
e
s
e
n
t
e
d
t
h
e
d
a
t
a
e
n
c
o
d
e
d
o
n
t
h
e
l
i
n
e
a
r
t
a
p
e
.
N
e
x
t
t
o
t
h
e
t
w
o
c
e
l
l
s
w
a
s
a
n
u
m
b
e
r
l
i
n
e
w
h
i
c
h
p
r
o
v
i
d
e
d
t
h
e
d
i
s
p
l
a
c
e
m
e
n
t
o
f
t
h
e
h
e
a
d
.
G
r
i
d
@
p
l
o
t
T
M
[
O
R
G
R
u
l
e
P
l
o
t
[
9
0
0
,
O
R
G
l
i
s
t
T
u
r
i
n
g
[
2
5
0
6
,
2
,
2
,
1
,
9
0
0
]
]
]
O
u
t
[
]
=
1
2
2
1
1
2
2
1
T
h
e
e
x
a
m
p
l
e
a
b
o
v
e
p
r
o
v
i
d
e
s
a
R
u
l
e
-
P
l
o
t
f
o
r
a
T
u
r
i
n
g
m
a
c
h
i
n
e
w
i
t
h
a
r
u
l
e
n
u
m
b
e
r
o
f
2
5
0
6
,
2
s
t
a
t
e
s
,
2
c
o
l
o
r
s
,
a
n
d
a
d
i
s
p
l
a
c
e
m
e
n
t
o
f
1
.
I
f
o
n
e
c
o
m
p
a
r
e
s
t
h
i
s
t
o
t
h
e
s
t
a
n
d
a
r
d
R
u
l
e
-
P
l
o
t
f
o
r
t
h
e
s
a
m
e
T
u
r
i
n
g
M
a
c
h
i
n
e
,
o
n
e
w
i
l
l
s
e
e
t
h
a
t
b
o
t
h
r
e
s
u
l
t
s
a
r
e
i
d
e
n
t
i
c
a
l
.
Modeling the Rules of All the Turing Machines given Above
2 State, 2 Color, Displacement range of -2 to 2
I
n
[
]
:
=
A
r
r
a
y
P
l
o
t
[
L
a
s
t
/
@
T
u
r
i
n
g
M
a
c
h
i
n
e
[
{
2
9
8
1
,
2
,
2
,
2
}
,
{
1
,
{
{
}
,
0
}
}
,
4
0
0
]
]
O
u
t
[
]
=
I
n
[
]
:
=
G
r
i
d
@
p
l
o
t
T
M
[
O
R
G
R
u
l
e
P
l
o
t
[
9
0
0
,
O
R
G
l
i
s
t
T
u
r
i
n
g
[
2
9
8
1
,
2
,
2
,
2
,
9
0
0
]
]
]
O
u
t
[
]
=
1
2
2
1
1
1
2
2
2 State, 2 Color, Displacement ranging from -3 to 3
I
n
[
]
:
=
A
r
r
a
y
P
l
o
t
[
L
a
s
t
/
@
T
u
r
i
n
g
M
a
c
h
i
n
e
[
{
1
3
0
8
0
,
2
,
2
,
3
}
,
{
1
,
{
{
}
,
0
}
}
,
4
0
0
]
]
O
u
t
[
]
=
I
n
[
]
:
=
G
r
i
d
@
p
l
o
t
T
M
[
O
R
G
R
u
l
e
P
l
o
t
[
9
0
0
,
O
R
G
l
i
s
t
T
u
r
i
n
g
[
1
3
0
8
0
,
2
,
2
,
3
,
9
0
0
]
]
]
O
u
t
[
]
=
1
2
2
1
2
2
1
1
I
n
[
]
:
=
A
r
r
a
y
P
l
o
t
[
L
a
s
t
/
@
T
u
r
i
n
g
M
a
c
h
i
n
e
[
{
1
2
7
9
8
,
2
,
2
,
3
}
,
{
1
,
{
{
}
,
0
}
}
,
4
0
0
]
]
O
u
t
[
]
=
I
n
[
]
:
=
G
r
i
d
@
p
l
o
t
T
M
[
O
R
G
R
u
l
e
P
l
o
t
[
9
0
0
,
O
R
G
l
i
s
t
T
u
r
i
n
g
[
1
2
7
9
8
,
2
,
2
,
3
,
9
0
0
]
]
]
O
u
t
[
]
=
1
2
2
1
2
1
1
1
2 State, 2 Color, Displacement ranging from -4 to 4
I
n
[
]
:
=
A
r
r
a
y
P
l
o
t
[
L
a
s
t
/
@
T
u
r
i
n
g
M
a
c
h
i
n
e
[
{
2
3
4
9
8
,
2
,
2
,
4
}
,
{
1
,
{
{
}
,
0
}
}
,
4
0
0
]
]
O
u
t
[
]
=
I
n
[
]
:
=
G
r
i
d
@
p
l
o
t
T
M
[
O
R
G
R
u
l
e
P
l
o
t
[
9
0
0
,
O
R
G
l
i
s
t
T
u
r
i
n
g
[
2
3
4
9
8
,
2
,
2
,
4
,
9
0
0
]
]
]
O
u
t
[
]
=
1
2
2
1
1
1
2
2
2 State, 3 Color, Displacement ranging from - 2 to 2
I
n
[
]
:
=
A
r
r
a
y
P
l
o
t
[
L
a
s
t
/
@
T
u
r
i
n
g
M
a
c
h
i
n
e
[
{
2
0
7
8
9
2
,
2
,
3
,
2
}
,
{
1
,
{
{
}
,
0
}
}
,
3
0
0
0
]
,
I
m
a
g
e
S
i
z
e
1
5
0
]
O
u
t
[
]
=
I
n
[
]
:
=
G
r
i
d
@
p
l
o
t
T
M
[
O
R
G
R
u
l
e
P
l
o
t
[
9
0
0
,
O
R
G
l
i
s
t
T
u
r
i
n
g
[
2
0
7
8
9
2
,
2
,
3
,
2
,
9
0
0
]
]
]
O
u
t
[
]
=
1
2
2
1
2
2
1
1
2
1
2 State, 4 color,Displacement ranging from -3 to 3
I
n
[
]
:
=
A
r
r
a
y
P
l
o
t
[
L
a
s
t
/
@
T
u
r
i
n
g
M
a
c
h
i
n
e
[
{
5
0
0
0
1
0
9
0
2
,
2
,
4
,
3
}
,
{
1
,
{
{
}
,
0
}
}
,
4
0
0
]
]
O
u
t
[
]
=
I
n
[
]
:
=
G
r
i
d
@
p
l
o
t
T
M
[
O
R
G
R
u
l
e
P
l
o
t
[
2
0
0
0
,
O
R
G
l
i
s
t
T
u
r
i
n
g
[
5
0
0
0
1
0
9
0
2
,
2
,
4
,
3
,
2
0
0
0
]
]
]
O
u
t
[
]
=
1
2
2
2
2
1
1
1
2
2
2
1
1
1
1
1
I
n
[
]
:
=
A
r
r
a
y
P
l
o
t
[
L
a
s
t
/
@
T
u
r
i
n
g
M
a
c
h
i
n
e
[
{
5
0
0
0
1
0
9
0
8
,
2
,
4
,
3
}
,
{
1
,
{
{
}
,
0
}
}
,
4
0
0
]
]
O
u
t
[
]
=
I
n
[
]
:
=
G
r
i
d
@
p
l
o
t
T
M
[
O
R
G
R
u
l
e
P
l
o
t
[
2
5
0
0
,
O
R
G
l
i
s
t
T
u
r
i
n
g
[
5
0
0
0
1
0
9
0
8
,
2
,
4
,
3
,
2
5
0
0
]
]
]
O
u
t
[
]
=
1
2
2
2
2
1
1
1
2
2
1
1
Modeling Turing Machines with Greater Head-Jumps
A
f
t
e
r
u
n
d
e
r
s
t
a
n
d
i
n
g
t
h
e
b
a
s
i
c
q
u
a
l
i
t
i
e
s
o
f
T
u
r
i
n
g
M
a
c
h
i
n
e
s
a
n
d
t
h
e
n
o
t
i
o
n
o
f
c
o
m
p
l
e
x
i
t
y
,
m
y
f
i
r
s
t
s
t
e
p
i
n
t
h
e
p
r
o
j
e
c
t
c
o
n
s
i
s
t
e
d
o
f
f
i
n
d
i
n
g
i
n
t
e
r
e
s
t
i
n
g
T
u
r
i
n
g
m
a
c
h
i
n
e
s
t
h
a
t
d
i
s
p
l
a
y
e
d
c
o
m
p
l
e
x
b
e
h
a
v
i
o
r
.
T
o
d
o
t
h
i
s
,
I
d
e
s
i
g
n
e
d
a
f
u
n
c
t
i
o
n
t
h
a
t
p
r
o
d
u
c
e
d
t
h
e
p
o
s
s
i
b
l
e
T
u
r
i
n
g
M
a
c
h
i
n
e
s
f
o
r
t
h
e
c
o
r
r
e
s
p
o
n
d
i
n
g
t
o
t
a
l
n
u
m
b
e
r
o
f
c
o
l
o
r
s
,
s
t
a
t
e
s
,
a
n
d
d
i
s
p
l
a
c
e
m
e
n
t
.
Generate an array of Turing Machines that matches the user-specified information:
I
n
[
]
:
=
A
r
r
a
y
T
m
[
s
_
I
n
t
e
g
e
r
,
c
_
I
n
t
e
g
e
r
,
d
x
_
I
n
t
e
g
e
r
,
e
v
o
_
I
n
t
e
g
e
r
,
n
1
_
I
n
t
e
g
e
r
,
n
2
_
I
n
t
e
g
e
r
]
:
=
T
a
b
l
e
[
A
r
r
a
y
P
l
o
t
[
L
a
s
t
/
@
T
u
r
i
n
g
M
a
c
h
i
n
e
[
{
x
,
s
,
c
,
d
x
}
,
{
1
,
{
{
}
,
0
}
}
,
e
v
o
]
]
,
{
x
,
n
1
,
n
2
}
]
T
o
u
s
e
t
h
e
f
u
n
c
t
i
o
n
,
t
h
e
u
s
e
r
f
i
r
s
t
d
e
f
i
n
e
s
t
h
e
t
o
t
a
l
n
u
m
b
e
r
o
f
s
t
a
t
e
s
,
c
o
l
o
r
,
a
n
d
t
h
e
m
a
x
i
m
u
m
p
o
s
s
i
b
l
e
d
i
s
p
l
a
c
e
m
e
n
t
.
A
f
t
e
r
d
e
f
i
n
i
n
g
t
h
e
s
e
k
e
y
e
l
e
m
e
n
t
s
t
h
e
u
s
e
r
d
e
f
i
n
e
s
t
h
e
r
a
n
g
e
o
f
r
u
l
e
s
.
W
h
a
t
t
h
i
s
m
e
a
n
s
i
s
t
h
a
t
i
f
I
i
n
p
u
t
2
,
2
,
3
-
f
o
r
t
h
e
v
a
r
i
a
b
l
e
"
c
o
l
o
r
,
s
t
a
t
e
a
n
d
d
x
"
-
t
h
e
f
u
n
c
t
i
o
n
w
i
l
l
p
r
o
d
u
c
e
a
T
u
r
i
n
g
m
a
c
h
i
n
e
w
i
t
h
2
s
t
a
t
e
s
,
2
c
o
l
o
r
s
a
n
d
a
d
i
s
p
l
a
c
e
m
e
n
t
r
a
n
g
i
n
g
f
r
o
m
-
3
t
o
3
.
I
f
I
w
r
i
t
e
2
0
,
0
0
0
a
n
d
2
0
,
1
0
0
f
o
r
n
1
a
n
d
n
2
,
t
h
e
f
u
n
c
t
i
o
n
w
i
l
l
p
r
o
v
i
d
e
t
h
e
a
l
l
t
h
e
c
o
r
r
e
s
p
o
n
d
i
n
g
m
o
d
e
l
s
i
n
t
h
e
r
a
n
g
e
.
I
n
[
]
:
=
A
r
r
a
y
T
m
[
2
,
2
,
3
,
7
0
,
1
0
1
8
3
,
1
0
2
0
0
]
O
u
t
[
]
=
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
L
o
o
k
i
n
g
a
b
o
v
e
,
w
e
c
a
n
s
e
e
h
o
w
t
h
e
f
u
n
c
t
i
o
n
c
a
n
b
e
u
s
e
d
t
o
s
e
e
t
h
e
v
a
r
i
o
u
s
T
u
r
i
n
g
M
a
c
h
i
n
e
m
o
d
e
l
s
.
T
h
i
s
w
a
s
t
h
e
m
o
s
t
r
e
p
e
t
i
t
i
v
e
a
n
d
t
i
m
e
-
c
o
n
s
u
m
i
n
g
p
a
r
t
o
f
t
h
e
p
r
o
j
e
c
t
b
e
c
a
u
s
e
t
h
e
t
o
t
a
l
p
o
s
s
i
b
l
e
n
u
m
b
e
r
o
f
T
u
r
i
n
g
M
a
c
h
i
n
e
r
i
s
e
s
a
t
a
n
e
x
p
o
n
e
n
t
i
a
l
r
a
t
e
w
h
e
n
I
i
n
c
r
e
a
s
e
d
e
i
t
h
e
r
t
h
e
c
o
l
o
r
,
s
t
a
t
e
o
r
d
i
s
p
l
a
c
e
m
e
n
t
.
F
u
r
t
h
e
r
m
o
r
e
,
w
i
t
h
i
n
t
h
e
f
e
w
t
h
o
u
s
a
n
d
t
o
f
e
w
m
i
l
l
i
o
n
p
o
s
s
i
b
l
e
v
a
r
i
a
t
i
o
n
s
,
o
n
l
y
f
e
w
o
f
t
h
e
m
o
d
e
l
s
e
x
h
i
b
i
t
e
d
c
o
m
p
l
e
x
a
n
d
i
n
t
e
r
e
s
t
i
n
g
b
e
h
a
v
i
o
r
.
M
a
n
y
o
f
t
h
e
r
u
l
e
s
d
i
d
n
o
t
p
r
o
d
u
c
e
a
n
y
b
e
h
a
v
i
o
r
o
r
w
a
s
a
r
e
p
e
t
i
t
i
o
n
o
f
p
r
e
v
i
o
u
s
m
o
d
e
l
s
.
Graph Relation Between Different Turing Machines States
Modeling the Relationship between different Rules Via Graphs
A
f
t
e
r
m
o
d
e
l
i
n
g
t
h
e
r
u
l
e
f
o
r
r
e
s
p
e
c
t
i
v
e
T
u
r
i
n
g
M
a
c
h
i
n
e
s
,
t
h
e
f
i
r
s
t
s
t
e
p
o
f
m
y
a
n
a
l
y
s
i
s
s
t
a
r
t
e
d
w
i
t
h
o
b
s
e
r
v
i
n
g
t
h
e
r
e
l
a
t
i
o
n
s
h
i
p
a
m
o
n
g
t
h
e
d
i
f
f
e
r
e
n
t
s
u
b
-
r
u
l
e
s
o
f
t
h
e
T
u
r
i
n
g
M
a
c
h
i
n
e
.
T
o
b
e
m
o
r
e
s
p
e
c
i
f
i
c
,
I
w
a
n
t
e
d
t
o
s
e
e
h
o
w
t
h
e
T
u
r
i
n
g
M
a
c
h
i
n
e
c
h
a
n
g
e
d
i
t
s
r
u
l
e
-
s
t
a
t
e
a
s
i
t
w
e
n
t
t
h
r
o
u
g
h
a
n
i
n
c
r
e
a
s
e
i
n
i
t
s
e
v
o
l
u
t
i
o
n
.
T
o
m
o
d
e
l
t
h
i
s
,
I
b
r
o
u
g
h
t
b
a
c
k
t
w
o
f
u
n
c
t
i
o
n
s
I
u
s
e
d
i
n
t
h
e
p
r
e
v
i
o
u
s
s
e
c
t
i
o
n
:
"
O
R
G
l
i
s
t
T
u
r
i
n
g
"
a
n
d
"
O
R
G
R
u
l
e
P
l
o
t
"
.
O
R
G
l
i
s
t
T
u
r
i
n
g
[
t
n
u
m
_
I
n
t
e
g
e
r
,
s
t
_
I
n
t
e
g
e
r
,
C
I
_
I
n
t
e
g
e
r
,
D
x
_
I
n
t
e
g
e
r
,
R
p
_
I
n
t
e
g
e
r
]
:
=
F
l
a
t
t
e
n
[
T
u
r
i
n
g
M
a
c
h
i
n
e
[
{
t
n
u
m
,
s
t
,
C
I
,
D
x
}
,
{
1
,
{
{
}
,
0
}
}
,
R
p
*
3
]
,
1
]
T
h
e
t
w
o
f
u
n
c
t