WolframAlpha.com
WolframCloud.com
All Sites & Public Resources...
Products & Services
Wolfram|One
Mathematica
Wolfram|Alpha Notebook Edition
Finance Platform
System Modeler
Wolfram Player
Wolfram Engine
WolframScript
Enterprise Private Cloud
Application Server
Enterprise Mathematica
Wolfram|Alpha Appliance
Enterprise Solutions
Corporate Consulting
Technical Consulting
Wolfram|Alpha Business Solutions
Resource System
Data Repository
Neural Net Repository
Function Repository
Wolfram|Alpha
Wolfram|Alpha Pro
Problem Generator
API
Data Drop
Products for Education
Mobile Apps
Wolfram Player
Wolfram Cloud App
Wolfram|Alpha for Mobile
Wolfram|Alpha-Powered Apps
Services
Paid Project Support
Wolfram U
Summer Programs
All Products & Services »
Technologies
Wolfram Language
Revolutionary knowledge-based programming language.
Wolfram Cloud
Central infrastructure for Wolfram's cloud products & services.
Wolfram Science
Technology-enabling science of the computational universe.
Wolfram Notebooks
The preeminent environment for any technical workflows.
Wolfram Engine
Software engine implementing the Wolfram Language.
Wolfram Natural Language Understanding System
Knowledge-based broadly deployed natural language.
Wolfram Data Framework
Semantic framework for real-world data.
Wolfram Universal Deployment System
Instant deployment across cloud, desktop, mobile, and more.
Wolfram Knowledgebase
Curated computable knowledge powering Wolfram|Alpha.
All Technologies »
Solutions
Engineering, R&D
Aerospace & Defense
Chemical Engineering
Control Systems
Electrical Engineering
Image Processing
Industrial Engineering
Mechanical Engineering
Operations Research
More...
Finance, Statistics & Business Analysis
Actuarial Sciences
Bioinformatics
Data Science
Econometrics
Financial Risk Management
Statistics
More...
Education
All Solutions for Education
Trends
Machine Learning
Multiparadigm Data Science
Internet of Things
High-Performance Computing
Hackathons
Software & Web
Software Development
Authoring & Publishing
Interface Development
Web Development
Sciences
Astronomy
Biology
Chemistry
More...
All Solutions »
Learning & Support
Learning
Wolfram Language Documentation
Fast Introduction for Programmers
Wolfram U
Videos & Screencasts
Wolfram Language Introductory Book
Webinars & Training
Summer Programs
Books
Need Help?
Support FAQ
Wolfram Community
Contact Support
Premium Support
Paid Project Support
Technical Consulting
All Learning & Support »
Company
About
Company Background
Wolfram Blog
Events
Contact Us
Work with Us
Careers at Wolfram
Internships
Other Wolfram Language Jobs
Initiatives
Wolfram Foundation
MathWorld
Computer-Based Math
A New Kind of Science
Wolfram Technology for Hackathons
Student Ambassador Program
Wolfram for Startups
Demonstrations Project
Wolfram Innovator Awards
Wolfram + Raspberry Pi
Summer Programs
More...
All Company »
Search
WOLFRAM COMMUNITY
Connect with users of Wolfram technologies to learn, solve problems and share ideas
Join
Sign In
Dashboard
Groups
People
Message Boards
Answer
(
Unmark
)
Mark as an Answer
GROUPS:
Staff Picks
Physics
Graphics and Visualization
Graphs and Networks
Wolfram Language
Wolfram High School Summer Camp
14
Damian Musk
[WSC21] On CDT-based simplicial triangulation decomposition in WL
Damian Musk, Fermi National Accelerator Laboratory
Posted
1 year ago
3452 Views
|
2 Replies
|
15 Total Likes
Follow this post
|
On Wolfram Language-based simplicial decomposition via the causal dynamical triangulation formalism
by
Damian Musk
This project seeks to further explore spacetime discretization through Wolfram-based hypergraph transformation dynamics, in which causal sets are effectively generated algorithmically via an abstract rewriting system defined over hypergraphs—an approach to causal set theory previously outlined by J. Gorard—while motivated by the causal dynamical triangulation (CDT) formalism and the associated procedures of R. Loll and B. Ruijl's locally causal dynamical triangulations (LCDT) . This article specifically seeks to examine a BoundaryMesh-based framework for loose corresponding interpretations of Euclidean and Lorentzian space, and apply these visualizations and operators to more grounded interpretations of some of the mathematical concepts featured in CDT and LCDT.
Introduction
T
h
e
c
o
n
s
t
r
u
c
t
i
o
n
o
f
a
u
n
i
f
i
e
d
m
o
d
e
l
t
h
a
t
e
x
p
l
a
i
n
s
t
h
e
p
h
e
n
o
m
e
n
a
o
f
b
o
t
h
q
u
a
n
t
u
m
m
e
c
h
a
n
i
c
s
a
n
d
g
e
n
e
r
a
l
r
e
l
a
t
i
v
i
t
y
—
t
h
e
f
a
m
e
d
i
s
s
u
e
o
f
q
u
a
n
t
u
m
g
r
a
v
i
t
y
—
r
e
m
a
i
n
s
o
n
e
o
f
t
h
e
m
o
s
t
s
i
g
n
i
f
i
c
a
n
t
p
r
o
b
l
e
m
s
o
f
p
h
y
s
i
c
s
a
n
d
s
c
i
e
n
c
e
a
s
a
w
h
o
l
e
.
T
h
e
m
o
s
t
w
e
l
l
-
d
e
v
e
l
o
p
e
d
a
n
d
w
e
l
l
-
k
n
o
w
n
p
r
o
p
o
s
a
l
i
s
t
h
a
t
o
f
b
o
s
o
n
i
c
s
t
r
i
n
g
t
h
e
o
r
y
,
b
u
t
s
t
r
i
n
g
t
h
e
o
r
y
i
s
a
f
r
a
m
e
w
o
r
k
c
o
n
s
i
d
e
r
e
d
f
u
n
d
a
m
e
n
t
a
l
l
y
f
l
a
w
e
d
b
y
s
o
m
e
d
u
e
t
o
i
t
s
f
o
c
u
s
o
n
g
r
a
n
d
,
s
o
m
e
w
h
a
t
a
r
b
i
t
r
a
r
y
p
h
y
s
i
c
a
l
a
s
s
u
m
p
t
i
o
n
s
a
b
o
u
t
t
h
e
s
t
r
u
c
t
u
r
e
o
f
t
h
e
u
n
i
v
e
r
s
e
t
h
a
t
b
e
t
t
e
r
l
e
n
d
i
t
s
e
l
f
t
o
m
a
t
h
e
m
a
t
i
c
i
a
n
s
t
h
a
n
s
c
i
e
n
t
i
s
t
s
l
o
o
k
i
n
g
f
o
r
a
p
h
y
s
i
c
a
l
t
h
e
o
r
y
.
C
a
u
s
a
l
s
e
t
t
h
e
o
r
y
,
h
o
w
e
v
e
r
,
r
e
s
p
o
n
d
s
t
o
t
h
i
s
l
a
c
k
o
f
p
h
y
s
i
c
a
l
i
t
y
t
h
r
o
u
g
h
i
t
s
e
m
p
h
a
s
i
s
o
n
a
m
o
r
e
g
e
n
e
r
a
l
t
y
p
e
o
f
p
h
e
n
o
m
e
n
o
n
f
a
m
i
l
i
a
r
t
o
e
v
e
r
y
i
n
h
a
b
i
t
a
n
t
o
f
t
h
e
U
n
i
v
e
r
s
e
:
t
h
a
t
o
f
c
a
u
s
e
a
n
d
e
f
f
e
c
t
,
w
h
i
c
h
h
a
s
m
a
t
h
e
m
a
t
i
c
a
l
s
i
g
n
i
f
i
c
a
n
c
e
a
t
a
l
l
l
e
n
g
t
h
s
c
a
l
e
s
.
M
o
r
e
f
o
r
m
a
l
l
y
,
c
a
u
s
a
l
s
e
t
t
h
e
o
r
y
e
x
p
l
o
r
e
s
t
h
e
i
n
v
a
r
i
a
n
c
e
o
f
t
h
e
c
a
u
s
a
l
s
t
r
u
c
t
u
r
e
o
f
L
o
r
e
n
t
z
i
a
n
m
a
n
i
f
o
l
d
u
n
d
e
r
c
o
n
f
o
r
m
a
l
t
r
a
n
s
f
o
r
m
a
t
i
o
n
s
,
c
h
a
n
g
e
s
o
f
c
o
o
r
d
i
n
a
t
e
s
μ
σ
→
μ
σ
(
σ
)
t
h
a
t
s
c
a
l
e
t
h
e
m
e
t
r
i
c
b
y
s
o
m
e
f
u
n
c
t
i
o
n
o
f
s
p
a
c
e
s
q
u
a
r
e
d
s
u
c
h
t
h
a
t
g
μ
ν
(
σ
)
→
2
Ω
(
σ
)
g
μ
ν
(
σ
)
;
t
h
i
s
a
l
l
o
w
s
c
a
u
s
a
l
s
e
t
t
h
e
o
r
y
t
o
c
o
n
c
e
r
n
i
t
s
e
l
f
w
i
t
h
c
o
n
t
i
n
u
o
u
s
s
p
a
c
e
t
i
m
e
s
a
r
b
i
t
r
a
r
i
l
y
w
e
l
l
-
a
p
p
r
o
x
i
m
a
t
e
d
b
y
f
i
n
i
t
e
s
e
t
o
f
e
v
e
n
t
s
,
k
n
o
w
n
a
s
c
a
u
s
a
l
s
e
t
s
,
w
i
t
h
c
a
u
s
a
l
p
a
r
t
i
a
l
o
r
d
e
r
r
e
l
a
t
i
o
n
s
u
p
o
n
t
h
e
m
.
C
a
u
s
a
l
d
y
n
a
m
i
c
a
l
t
r
i
a
n
g
u
l
a
t
i
o
n
(
C
D
T
)
i
s
c
l
o
s
e
l
y
r
e
l
a
t
e
d
:
b
o
t
h
C
D
T
a
n
d
c
a
u
s
a
l
s
e
t
s
a
t
t
e
m
p
t
t
o
m
o
d
e
l
s
p
a
c
e
t
i
m
e
w
i
t
h
a
d
i
s
c
r
e
t
e
c
a
u
s
a
l
s
t
r
u
c
t
u
r
e
,
b
u
t
w
h
i
l
e
t
h
e
c
a
u
s
a
l
s
e
t
a
p
p
r
o
a
c
h
i
s
r
e
l
a
t
i
v
e
l
y
g
e
n
e
r
a
l
,
C
D
T
a
s
s
u
m
e
s
a
m
o
r
e
s
p
e
c
i
f
i
c
r
e
l
a
t
i
o
n
s
h
i
p
b
e
t
w
e
e
n
t
h
e
l
a
t
t
i
c
e
o
f
s
p
a
c
e
t
i
m
e
e
v
e
n
t
s
a
n
d
g
e
o
m
e
t
r
y
w
i
t
h
a
L
a
g
r
a
n
g
i
a
n
c
o
n
s
t
r
a
i
n
e
d
b
y
e
n
o
u
g
h
i
n
i
t
i
a
l
c
o
n
d
i
t
i
o
n
s
a
s
t
o
b
e
n
u
m
e
r
i
c
a
l
l
y
a
n
a
l
y
z
e
d
—
c
a
u
s
a
l
s
e
t
s
a
r
e
f
a
r
m
o
r
e
t
o
p
o
l
o
g
i
c
a
l
l
y
g
e
n
e
r
i
c
.
T
h
i
s
a
r
t
i
c
l
e
e
x
p
l
o
r
e
s
a
f
a
i
r
l
y
s
t
r
a
i
g
h
t
f
o
r
w
a
r
d
v
e
r
s
i
o
n
o
f
C
D
T
,
t
h
e
1
+
1
c
a
s
e
(
o
n
e
s
p
a
t
i
a
l
d
i
m
e
n
s
i
o
n
,
o
n
e
t
e
m
p
o
r
a
l
d
i
m
e
n
s
i
o
n
w
i
t
h
a
(
+
,
-
)
m
e
t
r
i
c
s
i
g
n
a
t
u
r
e
)
,
w
i
t
h
c
o
n
d
i
t
i
o
n
s
t
h
a
t
a
r
e
f
a
i
r
l
y
e
a
s
y
t
o
d
e
m
o
n
s
t
r
a
t
e
w
i
t
h
W
o
l
f
r
a
m
'
s
g
r
a
p
h
m
a
n
i
p
u
l
a
t
i
o
n
a
n
d
g
e
n
e
r
a
t
i
o
n
f
u
n
c
t
i
o
n
s
.
I
n
p
a
r
t
i
c
u
l
a
r
,
t
h
e
m
a
j
o
r
i
t
y
o
f
t
h
e
i
n
v
e
s
t
i
g
a
t
i
o
n
w
i
l
l
b
e
s
p
e
n
t
o
n
c
o
m
p
a
r
i
n
g
a
n
d
c
o
n
t
r
a
s
t
i
n
g
d
i
f
f
e
r
e
n
t
m
a
t
h
e
m
a
t
i
c
a
l
,
p
h
y
s
i
c
a
l
,
a
n
d
v
i
s
u
a
l
i
z
a
b
l
e
p
r
o
p
e
r
t
i
e
s
o
f
g
r
a
p
h
s
w
i
t
h
a
r
b
i
t
r
a
r
i
l
y
-
a
s
s
i
g
n
e
d
a
n
d
c
o
o
r
d
i
n
a
t
i
z
e
d
c
a
u
s
a
l
r
e
l
a
t
i
o
n
s
h
i
p
s
:
n
e
t
w
o
r
k
s
w
i
t
h
a
r
b
i
t
r
a
r
i
l
y
a
s
s
i
g
n
e
d
c
a
u
s
a
l
r
e
l
a
t
i
o
n
s
h
i
p
s
t
h
a
t
c
o
r
r
e
s
p
o
n
d
l
o
o
s
e
l
y
t
o
a
L
o
r
e
n
t
z
i
a
n
c
a
s
e
,
a
n
d
c
o
o
r
d
i
n
a
t
i
z
e
d
n
e
t
w
o
r
k
s
i
n
E
u
c
l
i
d
e
a
n
s
p
a
c
e
w
i
t
h
c
a
l
c
u
l
a
b
l
e
M
i
n
k
o
w
s
k
i
n
o
r
m
s
,
r
e
s
p
e
c
t
i
v
e
l
y
.
T
h
i
s
m
a
y
g
i
v
e
m
o
r
e
c
o
n
c
r
e
t
e
i
n
s
i
g
h
t
i
n
t
o
t
h
e
c
i
r
c
u
m
s
t
a
n
c
e
s
t
h
a
t
d
e
f
i
n
e
c
a
u
s
a
l
d
y
n
a
m
i
c
a
l
t
r
i
a
n
g
u
l
a
t
i
o
n
a
n
d
t
h
e
t
o
p
o
l
o
g
i
c
a
l
s
p
e
c
i
f
i
c
i
t
y
t
h
a
t
d
i
s
t
i
n
g
u
i
s
h
e
s
i
t
f
r
o
m
t
h
e
m
o
r
e
g
e
n
e
r
i
c
c
a
u
s
a
l
s
e
t
t
h
e
o
r
y
.
Arbitrary Triangulation
We will begin with a procedure that constructs triangulation by arbitrarily classifying edges as spacelike or timelike: in this way, we are forming a non-coordinatized system based on the predetermined assignment of causal relationships as opposed to any norm-based calculations.
As previously described, CDT is based upon various types of simplices, generalized triangles such that a 1-simplex is a line segment, a 2-simplex is a triangle, a 3-simplex is a tetrahedron, et cetera. We begin with BoundaryMeshRegion[{p1,...,pn}, Line{...}] which yields a mesh defined by a boundary with coordinates p1,...,pn, as outlined by Line{...}. We can then triangulate this result—in CDT parlance, divide graph into 1-simplices—and use Graph[] and MeshConnectivityGraph[...] to obtain a triangulated graph.
We begin with a simple
B
o
u
n
d
a
r
y
M
e
s
h
[
.
.
.
]
type region,
ℛ
.
I
n
[
]
:
=
ℛ
=
B
o
u
n
d
a
r
y
M
e
s
h
R
e
g
i
o
n
[
{
{
0
,
0
}
,
{
1
,
0
}
,
{
1
,
1
}
,
{
0
,
1
}
}
,
L
i
n
e
[
{
1
,
2
,
3
,
4
,
1
}
]
]
O
u
t
[
]
=
To convert this into the type of discretized region, we may define the following helper functions: GetTriangulatedPlaneEdgeList and GetTriangulatedPlaneGraph.
I
n
[
]
:
=
G
e
t
T
r
i
a
n
g
u
l
a
t
e
d
P
l
a
n
e
E
d
g
e
L
i
s
t
[
t
r
i
a
n
g
u
l
a
t
e
d
G
r
a
p
h
_
]
:
=
D
i
r
e
c
t
e
d
E
d
g
e
@
@
#
&
/
@
E
d
g
e
L
i
s
t
[
t
r
i
a
n
g
u
l
a
t
e
d
G
r
a
p
h
]
;
G
e
t
T
r
i
a
n
g
u
l
a
t
e
d
P
l
a
n
e
G
r
a
p
h
[
r
e
g
i
o
n
_
]
:
=
M
e
s
h
C
o
n
n
e
c
t
i
v
i
t
y
G
r
a
p
h
[
T
r
i
a
n
g
u
l
a
t
e
M
e
s
h
[
r
e
g
i
o
n
]
]
;
G
e
n
e
r
a
t
e
T
r
i
a
n
g
u
l
a
t
e
d
M
e
s
h
A
d
j
a
c
e
n
y
[
r
e
g
i
o
n
_
]
:
=
M
o
d
u
l
e
[
{
t
r
i
a
n
g
u
l
a
t
e
d
P
l
a
n
e
G
r
a
p
h
,
t
r
i
a
n
g
u
l
a
t
e
d
P
l
a
n
e
V
e
r
t
e
x
L
i
s
t
,
t
r
i
a
n
g
u
l
a
t
e
d
P
l
a
n
e
E
d
g
e
L
i
s
t
}
,
t
r
i
a
n
g
u
l
a
t
e
d
P
l
a
n
e
G
r
a
p
h
=
G
e
t
T
r
i
a
n
g
u
l
a
t
e
d
P
l
a
n
e
G
r
a
p
h
[
r
e
g
i
o
n
]
;
t
r
i
a
n
g
u
l
a
t
e
d
P
l
a
n
e
E
d
g
e
L
i
s
t
=
G
e
t
T
r
i
a
n
g
u
l
a
t
e
d
P
l
a
n
e
E
d
g
e
L
i
s
t
[
t
r
i
a
n
g
u
l
a
t
e
d
P
l
a
n
e
G
r
a
p
h
]
;
t
r
i
a
n
g
u
l
a
t
e
d
P
l
a
n
e
V
e
r
t
e
x
L
i
s
t
=
V
e
r
t
e
x
L
i
s
t
[
t
r
i
a
n
g
u
l
a
t
e
d
P
l
a
n
e
G
r
a
p
h
]
;
G
r
a
p
h
[
t
r
i
a
n
g
u
l
a
t
e
d
P
l
a
n
e
E
d
g
e
L
i
s
t
,
V
e
r
t
e
x
L
a
b
e
l
s
-
>
P
l
a
c
e
d
[
"
N
a
m
e
"
,
T
o
o
l
t
i
p
]
]
]
t
r
i
a
n
g
u
l
a
t
e
d
G
r
a
p
h
=
G
e
t
T
r
i
a
n
g
u
l
a
t
e
d
P
l
a
n
e
G
r
a
p
h
[
ℛ
]
;
t
r
i
a
n
g
u
l
a
t
e
d
P
l
a
n
e
E
d
g
e
L
i
s
t
=
G
e
t
T
r
i
a
n
g
u
l
a
t
e
d
P
l
a
n
e
E
d
g
e
L
i
s
t
[
G
e
t
T
r
i
a
n
g
u
l
a
t
e
d
P
l
a
n
e
G
r
a
p
h
[
ℛ
]
]
;
t
r
i
a
n
g
u
l
a
t
e
d
P
l
a
n
e
V
e
r
t
e
x
L
i
s
t
=
V
e
r
t
e
x
L
i
s
t
[
G
e
t
T
r
i
a
n
g
u
l
a
t
e
d
P
l
a
n
e
G
r
a
p
h
[
ℛ
]
]
;
C
o
l
u
m
n
[
{
t
r
i
a
n
g
u
l
a
t
e
d
G
r
a
p
h
,
G
e
n
e
r
a
t
e
T
r
i
a
n
g
u
l
a
t
e
d
M
e
s
h
A
d
j
a
c
e
n
y
[
ℛ
]
}
]
O
u
t
[
]
=
We can now create a function,
r
a
n
d
o
m
T
i
m
e
l
i
k
e
A
s
s
i
g
n
e
r
, that takes the edge list of the triangulated region and creates a randomly generated association corresponding approximately half of the edges with a timelike value ("T") and the other half with a spacelike value ("S").
I
n
[
]
:
=
r
a
n
d
o
m
T
i
m
e
L
i
k
e
A
s
s
i
g
n
e
r
[
t
r
i
P
l
a
n
e
E
d
g
e
L
i
s
t
_
]
:
=
A
s
s
o
c
i
a
t
i
o
n
[
W
i
t
h
[
{
r
a
n
d
o
m
S
u
b
s
e
t
=
R
a
n
d
o
m
S
a
m
p
l
e
[
t
r
i
P
l
a
n
e
E
d
g
e
L
i
s
t
,
F
l
o
o
r
[
L
e
n
g
t
h
[
t
r
i
P
l
a
n
e
E
d
g
e
L
i
s
t
]
/
2
]
]
}
,
I
f
[
M
e
m
b
e
r
Q
[
r
a
n
d
o
m
S
u
b
s
e
t
,
#
]
,
#
-
>
"
T
"
,
#
-
>
"
S
"
]
&
/
@
t
r
i
P
l
a
n
e
E
d
g
e
L
i
s
t
]
]
u
p
d
a
t
e
G
r
a
p
h
E
d
g
e
A
s
s
o
c
[
v
e
r
t
e
x
_
]
:
=
A
s
s
o
c
i
a
t
i
o
n
[
I
f
[
M
a
t
c
h
Q
[
H
e
a
d
[
#
]
,
U
n
d
i
r
e
c
t
e
d
E
d
g
e
]
,
#
-
>
"
S
"
,
#
-
>
"
T
"
]
&
/
@
v
e
r
t
e
x
]
;
The resulting association informs most of the visualization employed for the triangulated BoundaryMesh and how causal relationships between different nodes of the network are defined. One part of the former is undirecting edges assigned spacelike, implemented with UndirectIfSpacelike—as well as, for the sake of completion, UndirectIfSpacelikeOrLightlike.
I
n
[
]
:
=
u
n
d
i
r
e
c
t
I
f
S
p
a
c
e
l
i
k
e
[
e
d
g
e
A
s
s
o
c
_
,
v
e
r
t
e
x
_
]
:
=
I
f
[
S
t
r
i
n
g
M
a
t
c
h
Q
[
e
d
g
e
A
s
s
o
c
[
v
e
r
t
e
x
]
,
"
S
"
]
,
U
n
d
i
r
e
c
t
e
d
E
d
g
e
@
@
v
e
r
t
e
x
,
v
e
r
t
e
x
]
;
u
n
d
i
r
e
c
t
I
f
S
p
a
c
e
l
i
k
e
O
r
L
i
g
h
t
l
i
k
e
[
e
d
g
e
A
s
s
o
c
_
,
v
e
r
t
e
x
_
]
:
=
I
f
[
S
t
r
i
n
g
M
a
t
c
h
Q
[
e
d
g
e
A
s
s
o
c
[
v
e
r
t
e
x
]
,
"
S
"
]
|
|
S
t
r
i
n
g
M
a
t
c
h
Q
[
e
d
g
e
A
s
s
o
c
[
v
e
r
t
e
x
]
,
"
L
"
]
,
U
n
d
i
r
e
c
t
e
d
E
d
g
e
@
@
v
e
r
t
e
x
,
v
e
r
t
e
x
]
;
We now approach the issue of causality in CDT: specifically, that locally causal dynamical triangulations should exhibit well-behaved vertices strictly surrounded by four timelike edges. This can be achieved fairly straightforwardly via IncidenceList:
I
n
[
]
:
=
c
o
u
n
t
N
o
n
s
p
a
c
e
l
i
k
e
E
d
g
e
s
[
e
d
g
e
L
i
s
t
_
,
v
e
r
t
e
x
_
]
:
=
L
e
n
g
t
h
[
S
e
l
e
c
t
[
I
n
c
i
d
e
n
c
e
L
i
s
t
[
e
d
g
e
L
i
s
t
,
v
e
r
t
e
x
]
,
H
e
a
d
[
#
]
=
=
D
i
r
e
c
t
e
d
E
d
g
e
&
]
]
;
d
o
e
s
1
1
C
D
T
C
a
s
e
O
b
e
y
C
a
u
s
a
l
i
t
y
L
o
c
a
l
l
y
[
e
d
g
e
L
i
s
t
_
]
:
=
F
r
e
e
Q
[
c
o
u
n
t
N
o
n
s
p
a
c
e
l
i
k
e
E
d
g
e
s
[
e
d
g
e
L
i
s
t
,
#
]
=
=
4
&
/
@
V
e
r
t
e
x
L
i
s
t
[
e
d
g
e
L
i
s
t
]
,
F
a
l
s
e
]
;
We should now be able to graph 3-dimensional graphs that present this locally-causally acceptable behavior through a visualization that incorporates three key pieces of causal information: (1) whether connections are spacelike, lightlike, or timelike, denoted through colors set in the original arbitrarily-assigned association; (2) preserved arbitrarily defined causal directions defined through the original convention with the all-directed BoundaryMesh; and (3) whether vertices are causally appropriate or not in Loll's 1+1 CDT local causality condition, for which points are green if the rule is violated and blue if they are appropriate.
I
n
[
]
:
=
m
i
n
k
o
w
s
k
i
C
o
l
o
r
e
r
[
e
d
g
e
A
s
s
o
c
_
,
v
e
r
t
e
x
_
]
:
=
W
h
i
c
h
[
S
t
r
i
n
g
M
a
t
c
h
Q
[
e
d
g
e
A
s
s
o
c
[
v
e
r
t
e
x
]
,
"
T
"
]
,
v
e
r
t
e
x
-
>
R
e
d
,
S
t
r
i
n
g
M
a
t
c
h
Q
[
e
d
g
e
A
s
s
o
c
[
v
e
r
t
e
x
]
,
"
L
"
]
,
v
e
r
t
e
x
-
>
Y
e
l
l
o
w
,
S
t
r
i
n
g
M
a
t
c
h
Q
[
e
d
g
e
A
s
s
o
c
[
v
e
r
t
e
x
]
,
"
S
"
]
,
v
e
r
t
e
x
-
>
P
u
r
p
l
e
]
;
v
i
o
l
a
t
i
o
n
C
o
l
o
r
e
r
[
e
d
g
e
L
i
s
t
_
,
v
e
r
t
e
x
L
i
s
t
_
]
:
=
I
f
[
c
o
u
n
t
N
o
n
s
p
a
c
e
l
i
k
e
E
d
g
e
s
[
e
d
g
e
L
i
s
t
,
#
]
=
=
4
,
#
-
>
G
r
e
e
n
,
#
-
>
B
l
u
e
]
&
/
@
v
e
r
t
e
x
L
i
s
t
;
We proceed to define the following Module for
I
n
[
]
:
=
G
e
t
R
e
f
i
n
e
d
G
r
a
p
h
[
t
r
i
P
l
a
n
e
G
r
a
p
h
_
,
t
r
i
P
l
a
n
e
E
d
g
e
L
i
s
t
_
,
t
y
p
e
_
]
:
=
M
o
d
u
l
e
[
c
l
a
s
s
,
r
a
n
d
o
m
l
y
A
s
s
i
g
n
e
d
E
d
g
e
A
s
s
o
c
,
u
n
d
i
r
e
c
t
e
d
I
f
S
p
a
c
e
l
i
k
e
,
u
n
d
i
r
e
c
t
e
d
I
f
S
p
a
c
e
l
i
k
e
O
r
L
i
g
h
t
l
i
k
e
,
m
i
n
k
o
w
s
k
i
C
o
l
o
r
e
d
E
d
g
e
s
,
v
i
o
l
a
t
i
o
n
C
o
l
o
r
e
d
v
e
r
t
i
c
e
s
,
u
n
d
i
r
e
c
t
e
d
A
s
s
i
g
n
e
d
E
d
g
e
A
s
s
o
c
,
u
n
d
i
r
e
c
t
e
d
I
f
S
p
a
c
e
l
i
k
e
O
r
L
i
g
h
t
l
i
k
e
A
s
s
i
g
n
e
d
E
d
g
e
A
s
s
o
c
,
u
n
d
i
r
e
c
t
e
d
I
f
S
p
a
c
e
l
i
k
e
A
s
s
i
g
n
e
d
E
d
g
e
A
s
s
o
c
,
c
l
a
s
s
=
T
o
L
o
w
e
r
C
a
s
e
[
t
y
p
e
]
;
r
a
n
d
o
m
l
y
A
s
s
i
g
n
e
d
E
d
g
e
A
s
s
o
c
=
r
a
n
d
o
m
T
i
m
e
L
i
k
e
A
s
s
i
g
n
e
r
[
t
r
i
P
l
a
n
e
E
d
g
e
L
i
s
t
]
;
u
n
d
i
r
e
c
t
e
d
I
f
S
p
a
c
e
l
i
k
e
=
u
n
d
i
r
e
c
t
I
f
S
p
a
c
e
l
i
k
e
[
r
a
n
d
o
m
l
y
A
s
s
i
g
n
e
d
E
d
g
e
A
s
s
o
c
,
#
]
&
/
@
t
r
i
P
l
a
n
e
E
d
g
e
L
i
s
t
;
u
n
d
i
r
e
c
t
e
d
I
f
S
p
a
c
e
l
i
k
e
O
r
L
i
g
h
t
l
i
k
e
=
u
n
d
i
r
e
c
t
I
f
S
p
a
c
e
l
i
k
e
O
r
L
i
g
h
t
l
i
k
e
[
r
a
n
d
o
m
l
y
A
s
s
i
g
n
e
d
E
d
g
e
A
s
s
o
c
,
#
]
&
/
@
t
r
i
P
l
a
n
e
E
d
g
e
L
i
s
t
;
u
n
d
i
r
e
c
t
e
d
I
f
S
p
a
c
e
l
i
k
e
A
s
s
i
g
n
e
d
E
d
g
e
A
s
s
o
c
=
u
p
d
a
t
e
G
r
a
p
h
E
d
g
e
A
s
s
o
c
[
u
n
d
i
r
e
c
t
e
d
I
f
S
p
a
c
e
l
i
k
e
O
r
L
i
g
h
t
l
i
k
e
]
;
u
n
d
i
r
e
c
t
e
d
I
f
S
p
a
c
e
l
i
k
e
O
r
L
i
g
h
t
l
i
k
e
A
s
s
i
g
n
e
d
E
d
g
e
A
s
s
o
c
=
u
p
d
a
t
e
G
r
a
p
h
E
d
g
e
A
s
s
o
c
[
u
n
d
i
r
e
c
t
e
d
I
f
S
p
a
c
e
l
i
k
e
O
r
L
i
g
h
t
l
i
k
e
]
;
v
i
o
l
a
t
i
o
n
C
o
l
o
r
e
d
v
e
r
t
i
c
e
s
=
v
i
o
l
a
t
i
o
n
C
o
l
o
r
e
r
[
t
r
i
P
l
a
n
e
E
d
g
e
L
i
s
t
,
V
e
r
t
e
x
L
i
s
t
[
t
r
i
P
l
a
n
e
G
r
a
p
h
]
]
;
W
h
i
c
h
[
S
t
r
i
n
g
M
a
t
c
h
Q
[
c
l
a
s
s
,
"
o
r
i
g
i
n
a
l
"
]
,
G
r
a
p
h
P
l
o
t
3
D
[
t
r
i
P
l
a
n
e
E
d
g
e
L
i
s
t
,
D
i
r
e
c
t
e
d
E
d
g
e
s
-
>
F
a
l
s
e
,
V
e
r
t
e
x
L
a
b
e
l
s
-
>
P
l
a
c
e
d
[
"
N
a
m
e
"
,
T
o
o
l
t
i
p
]
]
,
t
r
i
P
l
a
n
e
E
d
g
e
L
i
s
t
,
S
t
r
i
n
g
M
a
t
c
h
Q
[
t
y
p
e
,
"
t
i
m
e
l
i
k
e
"
]
,
G
r
a
p
h
P
l
o
t
3
D
[
G
r
a
p
h
[
u
n
d
i
r
e
c
t
e
d
I
f
S
p
a
c
e
l
i
k
e
,
V
e
r
t
e
x
L
a
b
e
l
s
-
>
P
l
a
c
e
d
[
"
N
a
m
e
"
,
T
o
o
l
t
i
p
]
,
E
d
g
e
S
t
y
l
e
-
>
(
m
i
n
k
o
w
s
k
i
C
o
l
o
r
e
r
[
u
n
d
i
r
e
c
t
e
d
I
f
S
p
a
c
e
l
i
k
e
A
s
s
i
g
n
e
d
E
d
g
e
A
s
s
o
c
,
#
]
&
/
@
u
n
d
i
r
e
c
t
e
d
I
f
S
p
a
c
e
l
i
k
e
)
]
]
,
u
n
d
i
r
e
c
t
e
d
I
f
S
p
a
c
e
l
i
k
e
A
s
s
i
g
n
e
d
E
d
g
e
A
s
s
o
c
,
u
n
d
i
r
e
c
t
e
d
I
f
S
p
a
c
e
l
i
k
e
,
S
t
r
i
n
g
M
a
t
c
h
Q
[
c
l
a
s
s
,
"
t
i
m
e
l
i
k
e
l
i
g
h
t
l
i
k
e
"
]
,
G
r
a
p
h
P
l
o
t
3
D
[
u
n
d
i
r
e
c
t
e
d
I
f
S
p
a
c
e
l
i
k
e
O
r
L
i
g
h
t
l
i
k
e
,
V
e
r
t
e
x
L
a
b
e
l
s
-
>
P
l
a
c
e
d
[
"
N
a
m
e
"
,
T
o
o
l
t
i
p
]
,
E
d
g
e
S
t
y
l
e
-
>
(
m
i
n
k
o
w
s
k
i
C
o
l
o
r
e
r
[
u
n
d
i
r
e
c
t
e
d
I
f
S
p
a
c
e
l
i
k
e
O
r
L
i
g
h
t
l
i
k
e
A
s
s
i
g
n
e
d
E
d
g
e
A
s
s
o
c
,
#
]
&
/
@
u
n
d
i
r
e
c
t
e
d
I
f
S
p
a
c
e
l
i
k
e
O
r
L
i
g
h
t
l
i
k
e
)
]
,
u
n
d
i
r
e
c
t
e
d
I
f
S
p
a
c
e
l
i
k
e
O
r
L
i
g
h
t
l
i
k
e
A
s
s
i
g
n
e
d
E
d
g
e
A
s
s
o
c
,
u
n
d
i
r
e
c
t
e
d
I
f
S
p
a
c
e
l
i
k
e
O
r
L
i
g
h
t
l
i
k
e
,
S
t
r
i
n
g
M
a
t
c
h
Q
[
c
l
a
s
s
,
"
t
i
m
e
l
i
k
e
l
i
g
h
t
l
i
k
e
w
v
i
o
l
a
t
i
o
n
s
"
]
,
G
r
a
p
h
P
l
o
t
3
D
[
u
n
d
i
r
e
c
t
e
d
I
f
S
p
a
c
e
l
i
k
e
O
r
L
i
g
h
t
l
i
k
e
,
V
e
r
t
e
x
L
a
b
e
l
s
-
>
P
l
a
c
e
d
[
"
N
a
m
e
"
,
T
o
o
l
t
i
p
]
,
D
i
r
e
c
t
e
d
E
d
g
e
s
-
>
F
a
l
s
e
,
E
d
g
e
S
t
y
l
e
-
>
(
m
i
n
k
o
w
s
k
i
C
o
l
o
r
e
r
[
u
n
d
i
r
e
c
t
e
d
I
f
S
p
a
c
e
l
i
k
e
O
r
L
i
g
h
t
l
i
k
e
A
s
s
i
g
n
e
d
E
d
g
e
A
s
s
o
c
,
#
]
&
/
@
u
n
d
i
r
e
c
t
e
d
I
f
S
p
a
c
e
l
i
k
e
O
r
L
i
g
h
t
l
i
k
e
)
,
V
e
r
t
e
x
S
t
y
l
e
-
>
v
i
o
l
a
t
i
o
n
C
o
l
o
r
e
d
v
e
r
t
i
c
e
s
]
,
u
n
d
i
r
e
c
t
e
d
I
f
S
p
a
c
e
l
i
k
e
O
r
L
i
g
h
t
l
i
k
e
A
s
s
i
g
n
e
d
E
d
g
e
A
s
s
o
c
,
u
n
d
i
r
e
c
t
e
d
I
f
S
p
a
c
e
l
i
k
e
O
r
L
i
g
h
t
l
i
k
e
,
T
r
u
e
,
"
I
n
p
u
t
a
v
a
l
i
d
t
y
p
e
!
\
n
"
]
]
C
o
l
u
m
n
[
{
G
e
t
R
e
f
i
n
e
d
G
r
a
p
h
[
t
r
i
a
n
g
u
l
a
t
e
d
G
r
a
p
h
,
t
r
i
a
n
g
u
l
a
t
e
d
P
l
a
n
e
E
d
g
e
L
i
s
t
,
"
t
i
m
e
l
i
k
e
"
]
[
[
1
]
]
,
G
e
t
R
e
f
i
n
e
d
G
r
a
p
h
[
t
r
i
a
n
g
u
l
a
t
e
d
G
r
a
p
h
,
t
r
i
a
n
g
u
l
a
t
e
d
P
l
a
n
e
E
d
g
e
L
i
s
t
,
"
T
i
m
e
l
i
k
e
L
i
g
h
t
L
i
k
e
"
]
[
[
1
]
]
,
G
e
t
R
e
f
i
n
e
d
G
r
a
p
h
[
t
r
i
a
n
g
u
l
a
t
e
d
G
r
a
p
h
,
t
r
i
a
n
g
u
l
a
t
e
d
P
l
a
n
e
E
d
g
e
L
i
s
t
,
"
T
i
m
e
l
i
k
e
L
i
g
h
t
L
i
k
e
W
V
i
o
l
a
t
i
o
n
s
"
]
[
[
1
]
]
}
]
O
u
t
[
]
=
As can be seen in the final graph, there are a number of events that violate this condition of local causality, thereby only making the network valid should these points be removed as to still form a triangulated surface consisting of these elemental (1,1) Minkowski triangles in accordance to local gluing rules; basic functions for such approaches are below.
I
n
[
]
:
=
A
m
e
n
d
V
i
o
l
a
t
i
n
g
I
n
c
i
d
e
n
c
e
L
i
s
t
[
e
d
g
e
L
i
s
t
_
]
:
=
W
i
t
h
[
{
f
i
r
s
t
F
o
u
r
E
d
g
e
s
=
e
d
g
e
L
i
s
t
[
[
1
;
;
4
]
]
}
,
J
o
i
n
[
#
-
>
R
e
d
&
/
@
f
i
r
s
t
F
o
u
r
E
d
g
e
s
,
#
-
>
P
u
r
p
l
e
&
/
@
C
o
m
p
l
e
m
e
n
t
[
e
d
g
e
L
i
s
t
,
f
i
r
s
t
F
o
u
r
E
d
g
e
s
]
]
]
;
I
n
[
]
:
=
A
m
e
n
d
V
i
o
l
a
t
i
n
g
I
n
c
i
d
e
n
c
e
L
i
s
t
[
e
d
g
e
L
i
s
t
_
]
:
=
W
i
t
h
[
{
f
i
r
s
t
F
o
u
r
E
d
g
e
s
=
e
d
g
e
L
i
s
t
[
[
1
;
;
4
]
]
}
,
J
o
i
n
[
#
-
>
R
e
d
&
/
@
f
i
r
s
t
F
o
u
r
E
d
g
e
s
,
#
-
>
P
u
r
p
l
e
&
/
@
C
o
m
p
l
e
m
e
n
t
[
e
d
g
e
L
i
s
t
,
f
i
r
s
t
F
o
u
r
E
d
g
e
s
]
]
]
;
I
n
[
]
:
=
U
p
d
a
t
e
E
d
g
e
A
s
s
o
c
[
e
d
g
e
A
s
s
o
c
_
,
v
e
r
t
e
x
_
]
:
=
a
d
j
a
c
e
n
t
E
d
g
e
s
=
I
n
c
i
d
e
n
c
e
L
i
s
t
[
K
e
y
s
[
e
d
g
e
A
s
s
o
c
]
,
v
e
r
t
e
x
]
;
I
f
[
c
o
u
n
t
N
o
n
s
p
a
c
e
l
i
k
e
E
d
g
e
s
[
a
d
j
a
c
e
n
t
E
d
g
e
s
]
!
=
4
,
S
c
a
n
[
(
e
d
g
e
A
s
s
o
c
[
#
]
=
"
T
"
)
&
]
[
a
d
j
a
c
e
n
t
E
d
g
e
s
[
[
1
;
;
4
]
]
]
;
S
c
a
n
[
(
e
d
g
e
A
s
s
o
c
[
#
]
=
"
S
"
)
&
]
[
C
o
m
p
l
e
m
e
n
t
[
a
d
j
a
c
e
n
t
E
d
g
e
s
,
a
d
j
a
c
e
n
t
E
d
g
e
s
[
[
1
;
;
4
]
]
]
]
]
;
A
m
e
n
d
V
i
o
l
a
t
i
n
g
[
e
d
g
e
A
s
s
o
c
_
]
:
=
W
i
t
h
[
{
v
e
r
t
e
x
L
i
s
t
=
V
e
r
t
e
x
L
i
s
t
[
K
e
y
s
[
e
d
g
e
A
s
s
o
c
]
]
}
,
U
p
d
a
t
e
E
d
g
e
A
s
s
o
c
[
e
d
g
e
A
s
s
o
c
,
v
e
r
t
e
x
L
i
s
t
[
[
1
]
]
]
]
Coordinatized Triangulation
Instead of an arbitrarily-assigned Lorentzian space that defines direction through relationships defined independently of continuum volumes, we will proceed with a coordinatized Euclidean space that allows us to calculate and classify Minkowski norms between edges with our (+,-) signature in the 1+1 case.
After having investigated the CDT-based properties of edge-vertex networks, we shall now proceed to examine Minkowski norm-motivated systems of establishing these networks. To accomplish this, we shall first obtain coordinate values for each of the vertices of our triangulated plane through AnnotationValue[graph_, VertexCoordinates], for which we interpret vertex coordinates as being in the form (x,t) in 1+1 Minkowski space. Then, by obtaining all edge combinations and then taking the interval of each event pair, we take the Minkowski norm
|
|
(
x
,
t
)
|
|
=
2
x
-
2
t
: if this norm is negative (the square of the temporal distance is greater than that of the spatial distance), events are timelike and will be causally connected by an edge alongside lightlike events with
|
|
(
x
,
t
)
|
|
=
0
; spacelike events with
|
|
(
x
,
t
)
|
|
>
0
, meanwhile, will be left as points unjoined by any edges.
I
n
[
]
:
=
n
o
r
m
e
d
L
i
s
t
[
c
o
o
r
d
_
]
:
=
(
c
o
o
r
d
-
>
(
F
i
r
s
t
[
F
i
r
s
t
[
c
o
o
r
d
]
-
L
a
s
t
[
c
o
o
r
d
]
]
^
2
-
L
a
s
t
[
F
i
r
s
t
[
c
o
o
r
d
]
-
L
a
s
t
[
c
o
o
r
d
]
]
^
2
)
)
;
g
e
t
M
i
n
k
o
w
s
k
i
N
o
r
m
e
d
G
r
a
p
h
[
t
r
i
P
l
a
n
e
d
G
r
a
p
h
_
]
:
=
M
o
d
u
l
e
[
{
p
o
i
n
t
s
=
T
u
p
l
e
s
[
A
n
n
o
t
a
t
i
o
n
V
a
l
u
e
[
t
r
i
P
l
a
n
e
d
G
r
a
p
h
,
V
e
r
t
e
x
C
o
o
r
d
i
n
a
t
e
s
]
,
2
]
}
,
G
r
a
p
h
[
D
i
r
e
c
t
e
d
E
d
g
e
@
@
F
i
r
s
t
[
#
]
&
/
@
S
e
l
e
c
t
[
n
o
r
m
e
d
L
i
s
t
/
@
p
o
i
n
t
s
,
L
a
s
t
[
#
]
<
0
&
]
,
V
e
r
t
e
x
L
a
b
e
l
s
-
>
P
l
a
c
e
d
[
"
N
a
m
e
"
,
T
o
o
l
t
i
p
]
]
]
p
r
u
n
e
I
n
c
i
d
e
n
c
e
L
i
s
t
s
[
g
r
a
p
h
_
]
:
=
F
l
a
t
t
e
n
[
T
a
b
l
e
[
W
i
t
h
[
{
a
d
j
a
c
e
n
t
E
d
g
e
s
=
I
n
c
i
d
e
n
c
e
L
i
s
t
[
g
r
a
p
h
,
V
e
r
t
e
x
L
i
s
t
[
g
r
a
p
h
]
[
[
i
]
]
]
}
,
I
f
[
L
e
n
g
t
h
[
a
d
j
a
c
e
n
t
E
d
g
e
s
]
>
4
,
a
d
j
a
c
e
n
t
E
d
g
e
s
[
[
1
;
;
4
]
]
,
a
d
j
a
c
e
n
t
E
d
g
e
s
]
]
,
{
i
,
L
e
n
g
t
h
[
V
e
r
t
e
x
L
i
s
t
[
g
r
a
p
h
]
]
}
]
]
I
n
[
]
:
=
r
e
d
u
c
e
d
G
r
a
p
h
=
g
e
t
M
i
n
k
o
w
s
k
i
N
o
r
m
e
d
G
r
a
p
h
[
G
e
t
T
r
i
a
n
g
u
l
a
t
e
d
P
l
a
n
e
G
r
a
p
h
[
ℛ
]
]
p
r
u
n
e
d
G
r
a
p
h
=
G
r
a
p
h
[
N
e
s
t
[
p
r
u
n
e
I
n
c
i
d
e
n
c
e
L
i
s
t
s
,
r
e
d
u
c
e
d
G
r
a
p
h
,
5
]
]
O
u
t
[
]
=
G
r
a
p
h
V
e
r
t
e
x
c
o
u
n
t
:
3
3
4
E
d
g
e
c
o
u
n
t
:
5
5
6
0
4
O
u
t
[
]
=
With this procedure, we can examine the graph as it grows increasingly refined through repeatedly applying pruneIncidenceLists[].
I
n
[
]
:
=
M
a
n
i
p
u
l
a
t
e
[
G
r
a
p
h
[
N
e
s
t
[
p
r
u
n
e
I
n
c
i
d
e
n
c
e
L
i
s
t
s
,
r
e
d
u
c
e
d
G
r
a
p
h
,
i
]
]
,
{
i
,
0
,
1
0
,
1
}
,
S
a
v
e
D
e
f
i
n
i
t
i
o
n
s
T
r
u
e
]
O
u
t
[
]
=
I
n
[
]
:
=
e
x
a
m
i
n
e
I
n
c
i
d
e
n
c
e
L
i
s
t
s
[
g
r
a
p
h
_
]
:
=
L
e
n
g
t
h
/
@
T
a
b
l
e
[
I
n
c
i
d
e
n
c
e
L
i
s
t
[
g
r
a
p
h
,
V
e
r
t
e
x
L
i
s
t
[
g
r
a
p
h
]
[
[
i
]
]
]
,
{
i
,
L
e
n
g
t
h
[
V
e
r
t
e
x
L
i
s
t
[
g
r
a
p
h
]
]
}
]
I
n
[
]
:
=
M
a
n
i
p
u
l
a
t
e
[
e
x
a
m
i
n
e
I
n
c
i
d
e
n
c
e
L
i
s
t
s
[
G
r
a
p
h
[
N
e
s
t
[
p
r
u
n
e
I
n
c
i
d
e
n
c
e
L
i
s
t
s
,
r
e
d
u
c
e
d
G
r
a
p
h
,
i
]
]
]
,
{
i
,
0
,
1
0
,
1
}
,
S
a
v
e
D
e
f
i
n
i
t
i
o
n
s
T
r
u
e
]
O
u
t
[
]
=
i
{
3
3
6
,
3
2
6
,
1
7
4
,
2
9
0
,
2
8
6
,
2
8
8
,
2
6
0
,
3
2
8
,
3
2
2
,
2
0
8
,
2
2
2
,
2
9
0
,
3
1
6
,
3
0
2
,
3
2
2
,
2
8
4
,
3
0
8
,
2
0
4
,
2
2
2
,
3
2
2
,
2
7
0
,
2
4
6
,
3
0
6
,
3
2
2
,
3
5
2
,
3
2
2
,
2
9
8
,
3
0
6
,
3
2
0
,
4
8
6
,
2
8
6
,
2
0
4
,
1
7
8
,
2
3
8
,
3
1
0
,
3
5
2
,
2
3
0
,
3
3
0
,
2
6
4
,
2
6
4
,
3
3
8
,
3
2
4
,
2
3
6
,
1
7
4
,
3
2
2
,
1
9
6
,
2
4
6
,
2
1
4
,
2
6
2
,
1
7
8
,
2
0
8
,
2
5
4
,
2
7
0
,
2
8
2
,
2
9
2
,
3
5
2
,
2
4
4
,
2
4
4
,
2
6
6
,
3
0
4
,
3
3
8
,
3
3
0
,
1
8
6
,
2
9
8
,
3
2
2
,
3
4
2
,
3
8
6
,
3
4
0
,
3
5
4
,
3
9
2
,
3
9
2
,
3
7
2
,
3
6
8
,
4
5
2
,
3
8
0
,
3
5
0
,
3
9
4
,
3
9
4
,
3
4
4
,
3
4
6
,
3
2
0
,
3
3
8
,
4
9
2
,
3
2
8
,
4
6
0
,
3
5
0
,
3
6
2
,
3
6
8
,
3
4
0
,
3
3
8
,
3
3
4
,
3
6
0
,
3
9
4
,
4
3
8
,
3
5
0
,
3
7
0
,
4
3
8
,
3
4
4
,
3
5
0
,
3
4
4
,
3
5
6
,
3
8
8
,
4
3
2
,
4
0
6
,
4
2
2
,
4
5
0
,
4
8
4
,
3
7
0
,
4
5
8
,
3
4
6
,
4
3
4
,
4
7
8
,
3
7
2
,
3
8
8
,
4
1
8
,
4
2
0
,
4
3
4
,
3
6
6
,
3
9
8
,
3
3
2
,
4
5
0
,
3
3
4
,
3
9
6
,
4
2
2
,
4
7
0
,
4
5
6
,
4
5
8
,
3
5
0
,
4
0
0
,
4
3
4
,
3
5
8
,
3
6
4
,
3
4
8
,
3
9
6
,
3
6
4
,
2
6
8
,
2
1
0
,
2
4
2
,
3
6
6
,
4
1
2
,
4
1
4
,
4
7
4
,
3
2
0
,
3
1
0
,
3
3
0
,
2
7
6
,
2
9
8
,
2
2
6
,
3
3
6
,
2
5
0
,
2
9
8
,
3
0
0
,
3
0
8
,
3
4
8
,
3
6
4
,
4
0
2
,
2
5
6
,
4
3
0
,
4
0
8
,
2
5
4
,
2
4
2
,
3
1
2
,
2
7
4
,
2
9
4
,
3
5
6
,
3
7
4
,
3
6
2
,
3
1
2
,
3
3
6
,
3
3
6
,
3
2
6
,
2
9
0
,
1
8
0
,
2
9
4
,
3
1
6
,
3
3
2
,
2
1
4
,
2
8
6
,
3
0
0
,
3
2
0
,
3
2
4
,
3
1
4
,
1
8
4
,
2
6
6
,
2
8
4
,
2
5
6
,
2
6
4
,
2
1
2
,
2
4
6
,
2
6
6
,
2
2
8
,
2
8
8
,
3
2
4
,
3
0
6
,
3
1
0
,
3
1
0
,
3
1
8
,
3
2
6
,
3
1
0
,
3
1
8
,
2
8
2
,
2
9
8
,
2
6
2
,
2
8
0
,
2
9
4
,
1
8
4
,
2
4
2
,
3
1
8
,
2
6
2
,
2
8
6
,
1
9
8
,
3
0
4
,
2
6
2
,
2
1
8
,
2
2
4
,
3
1
4
,
2
5
2
,
2
7
6
,
3
2
8
,
2
3
0
,
3
1
0
,
2
4
4
,
2
5
2
,
2
1
6
,
2
2
4
,
2
4
6
,
2
7
8
,
3
0
0
,
2
5
8
,
3
2
0
,
3
1
2
,
1
9
4
,
2
2
4
,
2
3
6
,
2
5
4
,
3
3
8
,
3
2
8
,
3
3
0
,
3
3
4
,
3
2
8
,
3
2
4
,
1
7
8
,
2
0
4
,
3
0
2
,
3
0
6
,
2
8
2
,
3
3
2
,
3
2
8
,
2
6
0
,
2
5
6
,
3
0
2
,
3
2
2
,
2
5
4
,
3
4
0
,
4
8
4
,
3
3
4
,
3
4
0
,
3
4
2
,
4
4
8
,
3
3
8
,
3
9
2
,
3
6
6
,
3
4
6
,
3
4
2
,
4
0
2
,
4
0
2
,
3
7
6
,
3
4
8
,
4
5
4
,
3
6
2
,
3
6
6
,
3
5
2
,
3
9
6
,
3
5
2
,
4
1
8
,
4
4
0
,
4
3
6
,
4
1
6
,
4
7
8
,
3
8
4
,
3
5
8
,
3
5
0
,
3
4
8
,
3
4
2
,
3
4
0
,
3
5
4
,
3
4
2
,
3
3
2
,
3
5
6
,
3
6
4
,
3
5
2
,
3
5
8
,
3
9
4
,
4
0
6
,
3
8
2
,
4
3
8
,
4
3
6
,
4
8
2
,
4
3
2
,
4
7
2
,
4
2
6
,
4
5
8
,
4
1
0
,
3
5
8
,
3
9
0
,
3
9
4
,
4
6
6
,
3
5
4
,
3
8
0
,
3
9
6
,
3
8
8
,
3
7
4
,
3
5
6
,
3
9
0
,
3
9
4
,
3
9
6
,
4
4
0
,
3
5
0
,
4
1
0
,
4
0
4
,
4
1
4
,
4
4
0
,
3
4
2
,
3
7
0
,
4
5
4
,
3
7
8
,
3
7
2
,
3
4
4
,
4
1
6
,
4
6
8
,
4
6
2
,
3
6
8
,
3
7
4
,
3
3
0
}
Analysis and Physical Assessment
A
m
a
j
o
r
t
e
r
m
o
f
m
a
t
h
e
m
a
t
i
c
a
l
i
n
t
e
r
e
s
t
i
s
t
h
e
t
w
o
-
d
i
m
e
n
s
i
o
n
a
l
E
i
n
s
t
e
i
n
-
H
i
l
b
e
r
t
a
c
t
i
o
n
i
n
t
h
e
c
o
n
t
i
n
u
u
m
,
S
=
κ
∫
2
d
x
|
g
|
(
R
-
2
Λ
)
,
f
o
r
t
h
e
i
n
v
e
r
s
e
o
f
N
e
w
t
o
n
'
s
c
o
n
s
t
a
n
t
,
κ
;
t
h
e
c
o
s
m
o
l
o
g
i
c
a
l
c
o
n
s
t
a
n
t
,
Λ
;
a
n
d
t
h
e
d
e
t
e
r
m
i
n
a
n
t
o
f
t
h
e
L
o
r
e
n
t
z
i
a
n
s
p
a
c
e
t
i
m
e
m
e
t
r
i
c
,
g
μ
ν
.
T
h
e
p
a
t
h
i
n
t
e
g
r
a
l
a
n
d
i
t
s
r
e
g
u
l
a
r
i
z
e
d
c
o
u
n
t
e
r
p
a
r
t
i
n
t
e
r
m
s
o
f
d
y
n
a
m
i
c
a
l
t
r
i
a
n
g
u
l
a
t
i
o
n
s
c
a
n
b
e
t
r
a
n
s
f
o
r
m
e
d
t
o
r
e
a
d
∫
[
g
]
-
i
Λ
∫
2
d
x
|
g
|
e
→
∑
T
1
C
(
T
)
-
i
λ
V
2
(
T
)
e
,
i
n
w
h
i
c
h
t
h
e
f
o
r
m
a
l
i
n
t
e
g
r
a
t
i
o
n
o
v
e
r
d
i
f
f
e
o
m
o
r
p
h
i
s
m
e
q
u
i
v
a
l
e
n
c
e
c
l
a
s
s
e
s
[
g
]
o
f
m
e
t
r
i
c
s
o
n
t
h
e
l
e
f
t
h
a
n
d
s
i
d
e
h
a
s
b
e
e
n
r
e
p
l
a
c
e
d
b
y
a
s
u
m
o
v
e
r
i
n
e
q
u
i
v
a
l
e
n
t
t
r
i
a
n
g
u
l
a
t
i
o
n
s
T
w
i
t
h
t
h
e
u
s
u
a
l
d
y
n
a
m
i
c
a
l
t
r
i
a
n
g
u
l
a
t
i
o
n
m
e
a
s
u
r
e
i
n
v
o
l
v
i
n
g
t
h
e
o
r
d
e
r
C
(
T
)
o
f
t
h
e
a
u
t
o
m
o
r
p
h
i
s
m
g
r
o
u
p
o
f
T
.
T
h
e
p
r
e
v
i
o
u
s
s
e
c
t
i
o
n
s
d
e
s
c
r
i
b
i
n
g
B
o
u
n
d
a
r
y
M
e
s
h
-
b
a
s
e
d
i
m
p
l
e
m
e
n
t
a
t
i
o
n
s
o
f
C
D
T
-
t
y
p
e
s
t
r
u
c
t
u
r
e
s
i
n
s
p
a
c
e
s
u
n
d
e
r
d
i
f
f
e
r
e
n
t
c
o
m
p
u
t
a
t
i
o
n
a
l
c
i
r
c
u
m
s
t
a
n
c
e
s
t
h
e
n
s
u
g
g
e
s
t
a
d
i
s
c
r
e
t
e
p
a
t
h
i
n
t
e
g
r
a
l
i
m
p
l
e
m
e
n
t
a
b
l
e
i
n
t
h
i
s
s
a
m
e
s
y
s
t
e
m
b
y
t
a
k
i
n
g
a
n
e
n
s
e
m
b
l
e
o
f
T
r
i
a
n
g
u
l
a
t
e
M
e
s
h
[
]
-
t
y
p
e
t
r
i
a
n
g
u
l
a
t
i
o
n
s
c
o
n
s
i
s
t
e
n
t
w
i
t
h
d
e
f
i
n
e
d
c
a
u
s
a
l
r
e
l
a
t
i
o
n
s
h
i
p
s
o
n
t
h
e
m
a
n
i
f
o
l
d
,
s
i
n
c
e
t
h
e
C
D
T
i
n
t
e
g
r
a
l
e
n
t
a
i
l
s
i
n
t
e
g
r
a
t
i
o
n
o
v
e
r
a
l
l
p
o
s
s
i
b
i
l
i
t
i
e
s
c
o
n
c
e
r
n
i
n
g
t
h
e
p
a
r
t
i
t
i
o
n
f
u
n
c
t
i
o
n
o
n
t
h
a
t
i
n
t
e
g
r
a
l
.
T
h
i
s
s
i
m
i
l
a
r
l
y
o
p
e
n
s
p
o
s
s
i
b
i
l
i
t
i
e
s
f
o
r
t
h
e
e
x
p
l
o
r
a
t
i
o
n
o
f
o
t
h
e
r
q
u
a
n
t
i
t
i
e
s
,
p
a
r
t
i
c
u
l
a
r
l
y
d
i
m
e
n
s
i
o
n
a
l
e
s
t
i
m
a
t
o
r
s
,
m
e
t
h
o
d
s
d
e
s
i
g
n
e
d
t
o
d
e
t
e
r
m
i
n
e
t
h
e
d
i
m
e
n
s
i
o
n
a
l
i
t
y
d
o
f
a
c
o
n
t
i
n
u
u
m
L
o
r
e
n
t
z
i
a
n
m
a
n
i
f
o
l
d
(
ℳ
,
g
)
u
s
i
n
g
o
n
l
y
t
h
e
d
i
s
c
r
e
t
e
i
n
f
o
r
m
a
t
i
o
n
p
r
o
v
i
d
e
d
b
y
a
c
a
u
s
a
l
n
e
t
w
o
r
k
f
a
i
t
h
f
u
l
l
y
e
m
b
e
d
d
e
d
i
n
t
o
(
ℳ
,
g
)
.
(
A
n
i
n
j
e
c
t
i
v
e
m
a
p
p
i
n
g
o
f
a
c
a
u
s
a
l
s
e
t
i
n
s
u
c
h
a
m
a
n
i
f
o
l
d
i
s
f
a
i
t
h
f
u
l
i
f
i
t
f
o
r
m
s
a
u
n
i
f
o
r
m
d
i
s
t
r
i
b
u
t
i
o
n
f
o
r
s
o
m
e
c
h
a
r
a
c
t
e
r
i
s
t
i
c
s
p
a
c
e
t
i
m
e
d
i
s
c
r
e
t
e
n
e
s
s
s
c
a
l
e
;
i
n
c
a
u
s
a
l
s
e
t
t
h
e
o
r
y
m
e
t
h
o
d
s
,
t
h
i
s
i
s
t
y
p
i
c
a
l
l
y
e
n
s
u
r
e
d
t
h
r
o
u
g
h
s
t
a
t
i
s
t
i
c
a
l
m
e
t
h
o
d
s
,
b
u
t
w
i
l
l
w
e
b
e
s
i
m
p
l
i
f
i
e
d
h
e
r
e
f
o
r
t
h
e
s
a
k
e
o
f
p
h
y
s
i
c
a
l
e
x
p
l
o
r
a
t
i
o
n
.
)
O
n
e
s
u
c
h
m
e
t
h
o
d
i
s
t
h
e
B
o
r
n
-
S
u
r
y
a
-
V
e
r
s
t
e
e
g
e
n
e
s
t
i
m
a
t
o
r
,
w
h
i
c
h
s
u
c
c
e
e
d
s
i
n
d
e
f
i
n
i
n
g
a
o
n
e
-
p
a
r
a
m
e
t
e
r
f
a
m
i
l
y
o
f
t
r
u
l
y
d
i
s
c
r
e
t
e
s
p
a
t
i
a
l
d
i
s
t
a
n
c
e
f
u
n
c
t
i
o
n
s
o
n
i
n
e
x
t
e
n
s
i
b
l
e
a
n
t
i
c
h
a
i
n
s
i
n
c
a
u
s
a
l
s
e
t
s
b
y
a
s
s
e
s
s
i
n
g
t
h
e
v
o
l
u
m
e
o