If the integrand is complicated, and it needs to be written out firstly and then it will be integrated.
If I have done as you suggested, it would be
In[85]:= eq1 = -A6 (1/(Sqrt[\[Pi]] Sqrt[t]) -
A8 E^(A8^2 t) Erfc[A8 Sqrt[t]]) Erfc[A7/(2 Sqrt[-t + T])]
Out[85]= -A6 (1/(Sqrt[\[Pi]] Sqrt[t]) -
A8 E^(A8^2 t) Erfc[A8 Sqrt[t]]) Erfc[A7/(2 Sqrt[-t + T])]
In[87]:= eq2 = HoldForm[Integrate[eq1, {t, 0, T}]]
Out[87]= \!\(
TagBox[
RowBox[{
SubsuperscriptBox["\[Integral]", "0", "T"],
RowBox[{"eq1",
RowBox[{"\[DifferentialD]", "t"}]}]}],
HoldForm]\)
which is not what I wanted.
What I wanted is
\!\(
\*SubsuperscriptBox[\(\[Integral]\), \(0\), \(T\)]\(\(\(-A6\)\ \((
\*FractionBox[\(1\), \(
\*SqrtBox[\(\[Pi]\)]\
\*SqrtBox[\(t\)]\)] - A8\
\*SuperscriptBox[\(E\), \(
\*SuperscriptBox[\(A8\), \(2\)]\ t\)]\ Erfc[A8\
\*SqrtBox[\(t\)]])\)\ Erfc[
\*FractionBox[\(A7\), \(2\
\*SqrtBox[\(\(-t\) + T\)]\)]]\) \[DifferentialD]t\)\)