Hi Rohit, I found some inconsistencies with cdot and asterisk symbols, after correcting these, I get a working code, but a new and quite different problem:
c=3*10^8
T=2
h=1.0545718* 10^(-34)
u={1,0,0,T}/Norm[{1,0,0,T}]
v={0,1,0,T}/Norm[{0,1,0,T}]
a={0,1,0,T}*{0,0,c,T}
b={0,0,1,T} *{0,c,0,T}
d= {0,0,1,T} *{c,0,0,T}
pde =I*h^2*(u*a-u*b)*D[psi[x, y,z,t],x] -
I*h^2*(u*a)*D[psi[x, y,z,t],y]+I*h^2*(u*b)* D[psi[x, y,z,t],z]-
I*h^2*(v*d)*D[psi[x, y,z,t],z]+I*h^2*(v*d)*(D[psi[x, y,z,t],y]) == 0
Then when solving it:
dsol=DSolve[pde,{psiT[x,y,z,t],psiX[x,y,z,t],psiY[x,y,z,t],psiZ[x,y,z,t],psiT[x,y,z,t],psiX[x,y,z,t],psiY[x,y,z,t],psiZ[x,y,z,t]},{t,x,y,z}];
Supplied equations are not differential or integral equations of the
given functions.
This happens no matter what values the vectors attain.
This should not be the case, if the vectors don't cancel out.