Looks like :
Integrate[(1/(2*Pi))*Exp[-(I*(n + \[Lambda])*t)]*Exp[Exp[t]], {t, -Pi, Pi}] ==
((-1)^(I (n + \[Lambda])) (-Gamma[-I (n + \[Lambda]), -E^\[Pi]] + 
Gamma[-I (n + \[Lambda]), -Cosh[\[Pi]] + Sinh[\[Pi]]]))/(2 \[Pi])
We can check:
f[n_, \[Lambda]_] := 
 NIntegrate[(1/(2*Pi))*Exp[-(I*(n + \[Lambda])*t)]*
 Exp[Exp[t]], {t, -Pi, Pi}, Method -> "LocalAdaptive", 
 WorkingPrecision -> 25];
 g[n_, \[Lambda]_] := ((-1)^(
 I (n + \[Lambda])) (-Gamma[-I (n + \[Lambda]), -E^\[Pi]] + 
 Gamma[-I (n + \[Lambda]), -Cosh[\[Pi]] + Sinh[\[Pi]]]))/(
 2 \[Pi]); N[g[1, 1] - f[1, 1], 20]
  (*0.*10^-18 + 0.*10^-19 I*) (* Looks good *)
Mathematica is not a magic box that'll spit out a solution to any problem.
All computer algebra systems, including Mathematica, are limited in their capabilities.