Message Boards Message Boards

GROUPS:

How to put an expression in terms of hyperbolic functions?

Posted 16 days ago
167 Views
|
1 Reply
|
1 Total Likes
|

The following expression should be Sinh[]/Cosh[].

(E^(-Sqrt[
         n] (r + 2 r0)) (-cms Dm (E^(Sqrt[n] (r + 2 r0)) - E^(
            Sqrt[n] (2 r + r0 + \[Delta])) - E^(
            Sqrt[n] (3 r0 + \[Delta])) + E^(
            Sqrt[n] (r + 2 (r0 + \[Delta])))) f Km m Sqrt[
          n] (1 + Ks \[Epsilon]) \[Theta] + (-E^(Sqrt[n] (2 r + r0))
               Imax (-m + n) + 
            E^(Sqrt[n] (3 r0 + 2 \[Delta])) Imax (-m + n) + 
            cms Dm E^(Sqrt[n] (2 r + r0 + \[Delta])) f m Sqrt[
             n] (1 + Ks \[Epsilon]) \[Theta] + 
            cms Dm E^(Sqrt[n] (3 r0 + \[Delta])) f m Sqrt[
             n] (1 + Ks \[Epsilon]) \[Theta] - 
            E^(Sqrt[n] (r + 2 r0)) m Sqrt[
             n] (Imax (r - r0 - \[Delta]) + 
               cms Dm f (1 + Ks \[Epsilon]) \[Theta]) - 
            E^(Sqrt[n] (r + 2 (r0 + \[Delta]))) m Sqrt[
             n] (Imax (r - r0 - \[Delta]) + 
               cms Dm f (1 + Ks \[Epsilon]) \[Theta])) cm[r0]))/(Dm (1 + 
         E^(2 Sqrt[n] \[Delta])) f n^(3/2) \[Theta] (Km + cm[r0]))
Posted 16 days ago

Does the function ExpToTrig help?

Reply to this discussion
Community posts can be styled and formatted using the Markdown syntax.
Reply Preview
Attachments
Remove
or Discard

Group Abstract Group Abstract