# Not able to solve an integration?

Posted 1 month ago
236 Views
|
0 Replies
|
1 Total Likes
|
 I wanted to integrate following integral. But its giving the solution in integral dV form. Is there any other way to get to exact solution? Please Help.Following is the problem: Integrate[-((3 p V + q Log[V] - 3 p V Log[V])/(3 p Log[V])) - ((-324 p^2 V^2 - 108 p t Log[V] + 162 p^2 V^2 Log[V] - 36 q^2 Log[V]^2 + 108 p r Log[V]^2)/(9 2^(2/3) p Log[ V] (-11664 p^3 V^3 - 5832 p^2 t V Log[V] + 8748 p^3 V^3 Log[V] - 5832 k p^2 t Log[V]^2 - 1944 p q t Log[V]^2 + 5832 p^2 t V Log[V]^2 - 1944 p^3 V^3 Log[V]^2 - 432 q^3 Log[V]^3 + 1944 p q r Log[V]^3 - 5832 p^2 s Log[V]^3 + Sqrt[(4 (-324 p^2 V^2 - 108 p t Log[V] + 162 p^2 V^2 Log[V] - 36 q^2 Log[V]^2 + 108 p r Log[V]^2)^3 + (-11664 p^3 V^3 - 5832 p^2 t V Log[V] + 8748 p^3 V^3 Log[V] - 5832 k p^2 t Log[V]^2 - 1944 p q t Log[V]^2 + 5832 p^2 t V Log[V]^2 - 1944 p^3 V^3 Log[V]^2 - 432 q^3 Log[V]^3 + 1944 p q r Log[V]^3 - 5832 p^2 s Log[V]^3)^2)]^(1/3)))) + (1/(18 2^(1/ 3) p Log[V])) (-11664 p^3 V^3 - 5832 p^2 t V Log[V] + 8748 p^3 V^3 Log[V] - 5832 k p^2 t Log[V]^2 - 1944 p q t Log[V]^2 + 5832 p^2 t V Log[V]^2 - 1944 p^3 V^3 Log[V]^2 - 432 q^3 Log[V]^3 + 1944 p q r Log[V]^3 - 5832 p^2 s Log[V]^3 + Sqrt[(4 (-324 p^2 V^2 - 108 p t Log[V] + 162 p^2 V^2 Log[V] - 36 q^2 Log[V]^2 + 108 p r Log[V]^2)^3 + (-11664 p^3 V^3 - 5832 p^2 t V Log[V] + 8748 p^3 V^3 Log[V] - 5832 k p^2 t Log[V]^2 - 1944 p q t Log[V]^2 + 5832 p^2 t V Log[V]^2 - 1944 p^3 V^3 Log[V]^2 - 432 q^3 Log[V]^3 + 1944 p q r Log[V]^3 - 5832 p^2 s Log[V]^3)^2)]^(1/3)), V]