0
|
2897 Views
|
5 Replies
|
2 Total Likes
View groups...
Share
GROUPS:

Pascal's Triangle and the Binomial Theorem

Posted 11 years ago
 I am looking for the source code for the Pascal's Triangle and the Binomial Theorem contributed by Pablo Alberca Bjerregaard http://demonstrations.wolfram.com/PascalsTriangleAndTheBinomialTheorem/If nobody can help me out, I would appreciate any tips or programs to get this kind of visualisation.
5 Replies
Sort By:
Posted 11 years ago
 Thank you really much!!
Posted 11 years ago
 Unfortunately the way the code was posted above is not usable since each line is in adifferent cell.However, for all the demonstarations the author's code is supplied on the site.  Click on the "Download Author Code" link which is located in the upper right hand harea of the page below the various sharing links.
Posted 11 years ago
 Code was fixed, but actually even in that broken form it is copy-able - just select it all and paste in M. notebook. Just saying - because it happens sometimes here.
Posted 11 years ago
 Thanks for the fix Sam.
Posted 11 years ago
 Here is the source code: Manipulate[  Pane[Text@    TraditionalForm[     Column[{Grid[{{Column[           Table[Row[Table[Binomial[i, j], {j, 0, i}], " "], {i, 0,             n}], Center],          Column[Table[Row[Table[( {                {i},                {j}              } ), {j, 0, i}]], {i, 0, n}], Center]}}], "",      With[{n = n},       HoldForm[(a + b)^n] == Expand[(a + b)^n]]}]], {550, 425},  Alignment -> {Center, Top}], {{n, 7}, 0, 10, 1}]Manipulate[ Pane[Text@   TraditionalForm[    Column[{Grid[{{Column[          Table[Row[Table[Binomial[i, j], {j, 0, i}], " "], {i, 0,            n}], Center],         Column[Table[Row[Table[( {               {i},               {j}              } ), {j, 0, i}]], {i, 0, n}], Center]}}], "",      With[{n = n},       HoldForm[(a + b)^n] == Expand[(a + b)^n]]}]], {550, 425},  Alignment -> {Center, Top}], {{n, 7}, 0, 10, 1}]