Here is an attempt:
func[\[Xi]_, \[Eta]_,
t_] = -((1350.` Sech[\[Eta]]^2 Tanh[\[Eta]] (1.` Sech[
0.1 t - \[Xi]]^2 Tanh[0.1 t - \[Xi]] +
0.6` Sech[0.3 t - \[Xi]]^2 Tanh[0.3 t - \[Xi]] +
1.6` Sech[0.1 t + \[Xi]]^2 Tanh[0.1 t + \[Xi]]))/((1 -
1.5 Sech[\[Eta]]^2) (1 - Sech[0.1 t - \[Xi]]^2 -
0.5 Sech[0.3 t - \[Xi]]^2 -
1.5 Sech[0.1 t + \[Xi]]^2) (0.3 Sech[\[Eta]]^2 +
0.5 Sech[0.1 t - \[Xi]]^2 + 0.3 Sech[0.3 t - \[Xi]]^2 -
0.8` Sech[0.1 t + \[Xi]]^2)^2)) // Rationalize //
Simplify;
xyToXiEta[x_?NumericQ, y_, t_] :=
NSolve[{x == \[Xi] - 1/2 Tanh[\[Xi] - 3/10 t] -
Tanh[\[Xi] - 1/10 t] - 3/2 Tanh[\[Xi] + 1/10 t],
y == \[Eta] - 3/2 Tanh[\[Eta]]}, {\[Xi], \[Eta]}, Reals];
With[{t = 1},
ListPointPlot3D[
Flatten[
Table[{x, y, func[\[Xi], \[Eta], t]} /. xyToXiEta[x, y, t], {x, -1,
1, 1/20}, {y, -1, 1, 1/20}], 2], BoxRatios -> {1, 1, 1},
Axes -> True, PlotRange -> {All, All, 2000 {-1, 1}},
AxesLabel -> {x, y, z}]]