Message Boards Message Boards

0
|
3142 Views
|
2 Replies
|
2 Total Likes
View groups...
Share
Share this post:

Find intersection of two functions f(x)=g(x)

Posted 10 years ago
Hi, I have to find when two functions intersect each other. How to find it for the x from 0 to infinity ?
f(x)={int 0.0588*t^(3.1)*exp{?0.8 t}dt from 0 to x};g(x)= {int 0.05181*t^(3.45)*exp{?0.87866 t}dt from 0 to x}f(x)={int 0.0588*t^(3.1)*exp{?0.8 t}dt from 0 to x};g(x)= {int 0.05181*t^(3.45)*exp{?0.87866 t}dt from 0 to x}
POSTED BY: brudny bob
2 Replies
Posted 10 years ago
Thank you ;)
POSTED BY: brudny bob
 In[1]:= f[x] = \!\(
 \*SubsuperscriptBox[\(\[Integral]\), \(0\), \(x\)]\(0.0588*
    t^\((3.1)\)*Exp[\(\[Minus]0.8\)\ t] \[DifferentialD]t\)\)
 
 
 Out[1]= 1.00005 - 0.146794 Gamma[4.1, 0.8 x]
 
 
 In[2]:= g[x] = \!\(
\*SubsuperscriptBox[\(\[Integral]\), \(0\), \(x\)]\(0.05181*
   t^\((3.45)\)*Exp[\(\[Minus]0.87866\)\ t] \[DifferentialD]t\)\)


Out[2]= 1.00007 - 0.0921321 Gamma[4.45, 0.87866 x]


In[3]:= FindRoot[f[x] == g[x], {x, 3}]


Out[3]= {x -> 4.18645}
POSTED BY: S M Blinder
Reply to this discussion
Community posts can be styled and formatted using the Markdown syntax.
Reply Preview
Attachments
Remove
or Discard

Group Abstract Group Abstract