For completeness, here is the same solution using NeumannValue:
s1 = NDSolve[{D[x[n, t], t] ==
D[x[n, t], {n, 2}] - q[n, t] x[n, t] +
NeumannValue[0.005, n == 0] + NeumannValue[0.005, n == 90],
D[q[n, t], t] == -q[n, t] Exp[x[n, t]],
x[n, 0] == Sin[(n + 90/4)* 2*Pi/90] + 0.005*n,
q[n, 0] == 0.01}, {x[n, t], q[n, t]}, {n, 0, 90}, {t, 0, 10}]
Plot3D[x[n, t] /. s1, {n, 0, 90}, {t, 0, 10}, PlotRange -> All]
Plot3D[(x[n, t] /. s) - (x[n, t] /. s1), {n, 0, 90}, {t, 0, 10},
PlotRange -> All]
The last plot compares (subtracts) the two solutions to get zero.