I've the following association:
In[95]:= BasicVectors
BasicVectors[1]==BasicVectors["TricPrim"]
Out[95]= <|"TricPrim" -> {{a, 0, 0}, {b Cos[\[Gamma]],
b Sin[\[Gamma]], 0}, {c Cos[\[Beta]],
c (-Cos[\[Beta]] Cot[\[Gamma]] + Cos[\[Alpha]] Csc[\[Gamma]]),
c Sqrt[-(-Cos[\[Beta]] Cot[\[Gamma]] +
Cos[\[Alpha]] Csc[\[Gamma]])^2 + Sin[\[Beta]]^2]}},
"MonoPrim" -> {{0, -b, 0}, {a Sin[\[Gamma]], -a Cos[\[Gamma]],
0}, {0, 0, c}},
"MonoBase" -> {{0, -b,
0}, {1/2 a Sin[\[Gamma]], -(1/2) a Cos[\[Gamma]], -(c/2)}, {1/
2 a Sin[\[Gamma]], -(1/2) a Cos[\[Gamma]], c/2}},
"OrthPrim" -> {{0, -b, 0}, {a, 0, 0}, {0, 0, c}},
"OrthBase" -> {{a/2, -(b/2), 0}, {a/2, b/2, 0}, {0, 0, c}},
"OrthBody" -> {{a/2, b/2, c/2}, {-(a/2), -(b/2), c/2}, {a/
2, -(b/2), -(c/2)}},
"OrthFace" -> {{a/2, 0, c/2}, {0, -(b/2), c/2}, {a/2, -(b/2), 0}},
"TetrPrim" -> {{a, 0, 0}, {0, a, 0}, {0, 0, c}},
"TetrBody" -> {{-(a/2), a/2, c/2}, {a/2, -(a/2), c/2}, {a/2, a/
2, -(c/2)}},
"TrigPrim" -> {{0, -a, c}, {(Sqrt[3] a)/2, a/2,
c}, {-((Sqrt[3] a)/2), a/2, c}},
"HexaPrim" -> {{0, -a, 0}, {(Sqrt[3] a)/2, a/2, 0}, {0, 0, c}},
"CubiPrim" -> {{a, 0, 0}, {0, a, 0}, {0, 0, a}},
"CubiFace" -> {{0, a/2, a/2}, {a/2, 0, a/2}, {a/2, a/2, 0}},
"CubiBody" -> {{-(a/2), a/2, a/2}, {a/2, -(a/2), a/2}, {a/2, a/
2, -(a/2)}},
1 -> {{a, 0, 0}, {b Cos[\[Gamma]], b Sin[\[Gamma]],
0}, {c Cos[\[Beta]],
c (-Cos[\[Beta]] Cot[\[Gamma]] + Cos[\[Alpha]] Csc[\[Gamma]]),
c Sqrt[-(-Cos[\[Beta]] Cot[\[Gamma]] +
Cos[\[Alpha]] Csc[\[Gamma]])^2 + Sin[\[Beta]]^2]}},
2 -> {{0, -b, 0}, {a Sin[\[Gamma]], -a Cos[\[Gamma]], 0}, {0, 0, c}},
3 -> {{0, -b,
0}, {1/2 a Sin[\[Gamma]], -(1/2) a Cos[\[Gamma]], -(c/2)}, {1/
2 a Sin[\[Gamma]], -(1/2) a Cos[\[Gamma]], c/2}},
4 -> {{0, -b, 0}, {a, 0, 0}, {0, 0, c}},
5 -> {{a/2, -(b/2), 0}, {a/2, b/2, 0}, {0, 0, c}},
6 -> {{a/2, b/2, c/2}, {-(a/2), -(b/2), c/2}, {a/2, -(b/2), -(c/2)}},
7 -> {{a/2, 0, c/2}, {0, -(b/2), c/2}, {a/2, -(b/2), 0}},
8 -> {{a, 0, 0}, {0, a, 0}, {0, 0, c}},
9 -> {{-(a/2), a/2, c/2}, {a/2, -(a/2), c/2}, {a/2, a/2, -(c/2)}},
10 -> {{0, -a, c}, {(Sqrt[3] a)/2, a/2, c}, {-((Sqrt[3] a)/2), a/2,
c}}, 11 -> {{0, -a, 0}, {(Sqrt[3] a)/2, a/2, 0}, {0, 0, c}},
12 -> {{a, 0, 0}, {0, a, 0}, {0, 0, a}},
13 -> {{0, a/2, a/2}, {a/2, 0, a/2}, {a/2, a/2, 0}},
14 -> {{-(a/2), a/2, a/2}, {a/2, -(a/2), a/2}, {a/2, a/2, -(a/2)}}|>
Out[96]= True
As you can see, I want to retrieve the values via both the number index corresponding to their postions and the meaningful keys. But this way makes the association data is long and repetitive.
I want to know if there is a better way to achieve the same purpose.
Regards,
Zhao