# How to formulate minimization problems with vector solution variables?

Posted 5 months ago
852 Views
|
3 Replies
|
2 Total Likes
|
 Solve a linear system m.x=b with WL-Function Minimize: In:= m = {{10, 7, 5}, {9, 7, 4}, {1, 4, 10}}; b = {3, 5, 3}; Minimize[{Norm[\!$$\* TagBox["m", Function[BoxForme, MatrixForm[BoxForme]]]$$ . {x1, x2, x3} - b]}, {x1, x2, x3}] Out= {0, {x1 -> -(109/83), x2 -> 232/83, x3 -> -(57/83)}} Works as expected.But what does the error message mean when I represent the variable x as a vector? How can I formulate equations with vector solution variables? In:= Minimize[{Norm[\!$$\* TagBox["m", Function[BoxForme, MatrixForm[BoxForme]]]$$ . x - b]}, x \[Element] Vectors[3, Rationals]] During evaluation of In:= Minimize::objfs: The objective function {Sqrt[Abs[-5+10 Indexed[<<2>>]+7 Indexed[<<2>>]+5 Indexed[<<2>>]]^2+2 Abs[-3+Times[<<2>>]+Times[<<2>>]+Times[<<2>>]]^2],Sqrt[Abs[-5+9 Indexed[<<2>>]+7 Indexed[<<2>>]+4 Indexed[<<2>>]]^2+2 Abs[-3+Times[<<2>>]+Times[<<2>>]+Times[<<2>>]]^2],Sqrt[Abs[-5+Subscript[x, <<1>>]+4 Indexed[<<2>>]+10 Indexed[<<2>>]]^2+2 Abs[-3+Indexed[<<2>>]+Times[<<2>>]+Times[<<2>>]]^2]} should be scalar-valued. Out= Minimize[{Sqrt[ Abs[-5 + {{10, 7, 5}, {9, 7, 4}, {1, 4, 10}} . x]^2 + 2 Abs[-3 + {{10, 7, 5}, {9, 7, 4}, {1, 4, 10}} . x]^2]}, x \[Element] Vectors[3, Rationals]] Attachments:
3 Replies
Sort By:
Posted 4 months ago
 Also, as another note: Since you are just doing least squares with a square, nonsingular matrix, you could just do x = Inverse[m].b; or more generally (for a non-square matrix): x = PseudoInverse[m].b; to get the least squares solution. But this may have just been an oversimplified example here and may not be applicable to you.
Posted 4 months ago
 I am not sure why, but I've had to sometimes use Inactive[] with my objective functions when using ConvexOptimization[] and I suspected that may also be the case here. I tried: Minimize[Norm[Inactive[Plus][m.x,-b]],x \[Element]Vectors[3,Reals]] And it appears to work and produces the same solution as the first example. However, I had to change the solution space to Reals, it didn't work with rationals. I have a suspicion this doesn't matter since you can always find a rational number arbitrarily close to a real number. If all the components of the objective function's gradient at the minimizer are finite, a rational close to the minimizer will also have an objective function value close to that of the minimizer. but I could be very wrong about this as I don't know really anything about optimization over rationals.
Posted 4 months ago
 This is very interesting - thank you for posting this hint! The problem seems to be that at some point expressions like -5 + {{10, 7, 5}, {9, 7, 4}, {1, 4, 10}} . x are to be evaluated - and this cannot work. Obviously by using Inactive[Plus] this can be prevented.But this implies that the new function Threaded[] can help as well, like so: Minimize[Norm[Threaded[m . x] - b], x \[Element] Vectors[3, Reals]]