Hi here,
I've a set of matrices and vectors as follows:
In[87]:= mats={{{-2, 0, 0}, {0, -2, 0}, {1, 1, 0}}, {{-2, 0, 0}, {0, 0,
0}, {0, -1, -2}}, {{0, 1, 2}, {1, -1, 0}, {-1, 0, -2}}, {{-1, 1,
0}, {1, -1, 0}, {-1, -1, -2}}, {{-2, 0, 0}, {0, -2, 0}, {0,
0, -2}}}
vecs={{-(23/8), 17/8, -(9/8)}, {17/8, 1, -3}, {0, 0,
0}, {1, -2, -(15/16)}, {1/8, -(23/8), 15/16}}
Out[87]= {{{-2, 0, 0}, {0, -2, 0}, {1, 1, 0}}, {{-2, 0, 0}, {0, 0,
0}, {0, -1, -2}}, {{0, 1, 2}, {1, -1, 0}, {-1, 0, -2}}, {{-1, 1,
0}, {1, -1, 0}, {-1, -1, -2}}, {{-2, 0, 0}, {0, -2, 0}, {0, 0, -2}}}
Out[88]= {{-(23/8), 17/8, -(9/8)}, {17/8, 1, -3}, {0, 0,
0}, {1, -2, -(15/16)}, {1/8, -(23/8), 15/16}}
I want to find a common set of solutions, a.k.a., x, for the above matrices and their corresponding vectors, which satisfy the following conditions:
Dot[mat, x] = vec (mod Z)
\forall mat \in mats
and
\forall vec \in vecs
in the corresponding order.
Any tips for tackling this problem?
Regards,
Zhao