Message Boards Message Boards

Couldn't combine plots with Show?

Posted 1 year ago

I use the following code,

rr = Array[mm, 10];
For[i = 1, i <= 8, i++,  mm[i] = Plot3D[u[x, t, i], {x, 0, 1}, {t, i, i + 1},   PlotRange -> All]]
Show[Table[mm[i], {i, 1, 8}]]

When i execute, it gives the following error:

Show::gcomb: Could not combine the graphics objects in Show[{mm[1],mm[2],mm[3],mm[4],mm[5],mm[6],mm[7],mm[8]}].

How can i solve this problem? Please help urgently.

Attachments:
POSTED BY: zekeriya Özkan
13 Replies

Can you send me figure please. zekeriyaozkan@gmail.com

POSTED BY: zekeriya Özkan

This is what I got

enter image description here

POSTED BY: Rohit Namjoshi

Can you send me codes please? And also can you help me at drawing of TJMCS_001.nb?

Attachments:
POSTED BY: zekeriya Özkan

This is the true figure. Figure1.nb was studying and giving this figure and sometime later this code didn't work. How can i execute this code in a true working way?

POSTED BY: zekeriya Özkan

All I did was evaluate all of the input expressions in figure1 (1).nb. To use a fresh kernel either quit and restart Mathematica or from the Evaluation menu Quit Kernel.

For TJMCS_001.nb I get the following

enter image description here

POSTED BY: Rohit Namjoshi

If the error says

Show::gcomb: Could not combine the graphics objects in Show[{mm[1],mm[2],mm[3],mm[4],mm[5],mm[6],mm[7],mm[8]}].

it means that it did not compute any of the mm[k].

POSTED BY: Gianluca Gorni

Your code that starts with

(2 - Exp[-N[Pi^2 ] k^2]) T[n + 2] - 
  T[n + 1] - (1 - Exp[- N[Pi^2 ] k^2]) T[n] == 0

works fine for me and gives a nice picture. I am using version 13.2.1.

POSTED BY: Gianluca Gorni

First code (Figure1.nb) was studying at the beginning. But when i wrote (TJMCS_001.nb), all of these codes gave "couldn't combine error".

PLEASE, Help me.

POSTED BY: zekeriya Özkan
In[1]:= RSolve[{T[
     n + 1] - (Exp[- N[Pi^2 ] j^2 /4] - 
       24/(N[Pi^2 ] j^2) (1 - Exp[- N[Pi^2 ] j^2 /4])) T[n] == 0, 
  T[0] == 1}, T[n], n]

Out[1]= {{T[
    n] -> (5.91321 2.71828^(-4.9348 j^2) (2.71828^(-2.4674 j^2) - 
        2.43171/j^2 + (2.43171 2.71828^(-2.4674 j^2))/j^2)^(-1. + 
       n) (-1. + 1. 2.71828^(2.4674 j^2) - 
        0.411234 j^2) (-1. 2.71828^((107607675 j^2)/43611748) + 
        1. 2.71828^(4.9348 j^2) - 
        0.411234 2.71828^((107607675 j^2)/43611748)
          j^2))/(j^2 (2.43171 - 
        2.43171 2.71828^((107607675 j^2)/43611748) + j^2))}}

T[n_] = (5.9132057786981775` 2.718281828459045`^(-4.934802200544679` \
j^2) (2.718281828459045`^(-2.4674011002723395` j^2) - 
      2.4317084074161066`/j^2 + (
      2.4317084074161066` 2.718281828459045`^(-2.4674011002723395` \
j^2))/j^2)^(-1.` + 
     n) (-1.` + 1.` 2.718281828459045`^(2.4674011002723395` j^2) - 
      0.4112335167120566` j^2) (-1.` 2.718281828459045`^((
       107607675 j^2)/43611748) + 
      1.` 2.718281828459045`^(4.934802200544679` j^2) - 
      0.4112335167120566` 2.718281828459045`^((107607675 j^2)/
       43611748) j^2))/(j^2 (2.4317084074161066` - 
      2.4317084074161066` 2.718281828459045`^((107607675 j^2)/
       43611748) + j^2))

In[19]:= 
T[j_, t_] = (Exp[- N[Pi^2 ] j^2 (t - n/4)] - 
    24/(N[Pi^2 ] j^2) (1 - Exp[- N[Pi^2 ] j^2 (t - n/4)])) T[n]

Out[19]= 1/Sqrt[
 8. - 20. E^((107607675 k^2)/10902937) + 
  13. E^((215215350 k^2)/
   10902937)] 0.5 2^-n (1. E^(
    9.8696 k^2) (-((0.333333 E^(9.8696 k^2))/(
       0.666667 - 1. E^(9.8696 k^2))) - (
      0.333333 Sqrt[
       8. - 20. E^(9.8696 k^2) + 13. E^(19.7392 k^2)])/(-0.666667 + 
       1. E^(9.8696 k^2)))^n + 
   1. Sqrt[8. - 20. E^((107607675 k^2)/10902937) + 
     13. E^((215215350 k^2)/
      10902937)] (-((0.333333 E^(9.8696 k^2))/(
       0.666667 - 1. E^(9.8696 k^2))) - (
      0.333333 Sqrt[
       8. - 20. E^(9.8696 k^2) + 13. E^(19.7392 k^2)])/(-0.666667 + 
       1. E^(9.8696 k^2)))^n - 
   1. E^(9.8696 k^2) (-((0.333333 E^(9.8696 k^2))/(
       0.666667 - 1. E^(9.8696 k^2))) + (
      0.333333 Sqrt[
       8. - 20. E^(9.8696 k^2) + 13. E^(19.7392 k^2)])/(-0.666667 + 
       1. E^(9.8696 k^2)))^n + 
   1. Sqrt[8. - 20. E^((107607675 k^2)/10902937) + 
     13. E^((215215350 k^2)/
      10902937)] (-((0.333333 E^(9.8696 k^2))/(
       0.666667 - 1. E^(9.8696 k^2))) + (
      0.333333 Sqrt[
       8. - 20. E^(9.8696 k^2) + 13. E^(19.7392 k^2)])/(-0.666667 + 
       1. E^(9.8696 k^2)))^n) (E^(-9.8696 j^2 (-(n/4) + t)) - (
   2.43171 (1 - E^(-9.8696 j^2 (-(n/4) + t))))/j^2)

In[21]:= AA[j_] = Integrate[2 (-2 x^2 + 2 x) Sin[Pi j x], {x, 0, 1}]

Out[21]= (8 - 8 Cos[j \[Pi]] - 4 j \[Pi] Sin[j \[Pi]])/(j^3 \[Pi]^3)

In[22]:= u[x_, t_, n_] = Sum[AA[j] Sin[Pi j x ] T[j, t], {j, 10}]

Out[22]= 0. + 
 1/Sqrt[8. - 20. E^((107607675 k^2)/10902937) + 
   13. E^((215215350 k^2)/10902937)]
   0.258012 2^-n (E^(-9.8696 (-(n/4) + t)) - 
    2.43171 (1 - E^(-9.8696 (-(n/4) + t)))) (1. E^(
     9.8696 k^2) (-((0.333333 E^(9.8696 k^2))/(
        0.666667 - 1. E^(9.8696 k^2))) - (
       0.333333 Sqrt[
        8. - 20. E^(9.8696 k^2) + 13. E^(19.7392 k^2)])/(-0.666667 + 
        1. E^(9.8696 k^2)))^n + 
    1. Sqrt[8. - 20. E^((107607675 k^2)/10902937) + 
      13. E^((215215350 k^2)/
       10902937)] (-((0.333333 E^(9.8696 k^2))/(
        0.666667 - 1. E^(9.8696 k^2))) - (
       0.333333 Sqrt[
        8. - 20. E^(9.8696 k^2) + 13. E^(19.7392 k^2)])/(-0.666667 + 
        1. E^(9.8696 k^2)))^n - 
    1. E^(9.8696 k^2) (-((0.333333 E^(9.8696 k^2))/(
        0.666667 - 1. E^(9.8696 k^2))) + (
       0.333333 Sqrt[
        8. - 20. E^(9.8696 k^2) + 13. E^(19.7392 k^2)])/(-0.666667 + 
        1. E^(9.8696 k^2)))^n + 
    1. Sqrt[8. - 20. E^((107607675 k^2)/10902937) + 
      13. E^((215215350 k^2)/
       10902937)] (-((0.333333 E^(9.8696 k^2))/(
        0.666667 - 1. E^(9.8696 k^2))) + (
       0.333333 Sqrt[
        8. - 20. E^(9.8696 k^2) + 13. E^(19.7392 k^2)])/(-0.666667 + 
        1. E^(9.8696 k^2)))^n) Sin[\[Pi] x] + 
 1/Sqrt[8. - 20. E^((107607675 k^2)/10902937) + 
   13. E^((215215350 k^2)/10902937)]
   0.00955601 2^-n (E^(-88.8264 (-(n/4) + t)) - 
    0.27019 (1 - E^(-88.8264 (-(n/4) + t)))) (1. E^(
     9.8696 k^2) (-((0.333333 E^(9.8696 k^2))/(
        0.666667 - 1. E^(9.8696 k^2))) - (
       0.333333 Sqrt[
        8. - 20. E^(9.8696 k^2) + 13. E^(19.7392 k^2)])/(-0.666667 + 
        1. E^(9.8696 k^2)))^n + 
    1. Sqrt[8. - 20. E^((107607675 k^2)/10902937) + 
      13. E^((215215350 k^2)/
       10902937)] (-((0.333333 E^(9.8696 k^2))/(
        0.666667 - 1. E^(9.8696 k^2))) - (
       0.333333 Sqrt[
        8. - 20. E^(9.8696 k^2) + 13. E^(19.7392 k^2)])/(-0.666667 + 
        1. E^(9.8696 k^2)))^n - 
    1. E^(9.8696 k^2) (-((0.333333 E^(9.8696 k^2))/(
        0.666667 - 1. E^(9.8696 k^2))) + (
       0.333333 Sqrt[
        8. - 20. E^(9.8696 k^2) + 13. E^(19.7392 k^2)])/(-0.666667 + 
        1. E^(9.8696 k^2)))^n + 
    1. Sqrt[8. - 20. E^((107607675 k^2)/10902937) + 
      13. E^((215215350 k^2)/
       10902937)] (-((0.333333 E^(9.8696 k^2))/(
        0.666667 - 1. E^(9.8696 k^2))) + (
       0.333333 Sqrt[
        8. - 20. E^(9.8696 k^2) + 13. E^(19.7392 k^2)])/(-0.666667 + 
        1. E^(9.8696 k^2)))^n) Sin[3 \[Pi] x] + 
 1/Sqrt[8. - 20. E^((107607675 k^2)/10902937) + 
   13. E^((215215350 k^2)/10902937)]
   0.0020641 2^-n (E^(-246.74 (-(n/4) + t)) - 
    0.0972683 (1 - E^(-246.74 (-(n/4) + t)))) (1. E^(
     9.8696 k^2) (-((0.333333 E^(9.8696 k^2))/(
        0.666667 - 1. E^(9.8696 k^2))) - (
       0.333333 Sqrt[
        8. - 20. E^(9.8696 k^2) + 13. E^(19.7392 k^2)])/(-0.666667 + 
        1. E^(9.8696 k^2)))^n + 
    1. Sqrt[8. - 20. E^((107607675 k^2)/10902937) + 
      13. E^((215215350 k^2)/
       10902937)] (-((0.333333 E^(9.8696 k^2))/(
        0.666667 - 1. E^(9.8696 k^2))) - (
       0.333333 Sqrt[
        8. - 20. E^(9.8696 k^2) + 13. E^(19.7392 k^2)])/(-0.666667 + 
        1. E^(9.8696 k^2)))^n - 
    1. E^(9.8696 k^2) (-((0.333333 E^(9.8696 k^2))/(
        0.666667 - 1. E^(9.8696 k^2))) + (
       0.333333 Sqrt[
        8. - 20. E^(9.8696 k^2) + 13. E^(19.7392 k^2)])/(-0.666667 + 
        1. E^(9.8696 k^2)))^n + 
    1. Sqrt[8. - 20. E^((107607675 k^2)/10902937) + 
      13. E^((215215350 k^2)/
       10902937)] (-((0.333333 E^(9.8696 k^2))/(
        0.666667 - 1. E^(9.8696 k^2))) + (
       0.333333 Sqrt[
        8. - 20. E^(9.8696 k^2) + 13. E^(19.7392 k^2)])/(-0.666667 + 
        1. E^(9.8696 k^2)))^n) Sin[5 \[Pi] x] + 
 1/Sqrt[8. - 20. E^((107607675 k^2)/10902937) + 
   13. E^((215215350 k^2)/10902937)]
   0.000752222 2^-n (E^(-483.611 (-(n/4) + t)) - 
    0.0496267 (1 - E^(-483.611 (-(n/4) + t)))) (1. E^(
     9.8696 k^2) (-((0.333333 E^(9.8696 k^2))/(
        0.666667 - 1. E^(9.8696 k^2))) - (
       0.333333 Sqrt[
        8. - 20. E^(9.8696 k^2) + 13. E^(19.7392 k^2)])/(-0.666667 + 
        1. E^(9.8696 k^2)))^n + 
    1. Sqrt[8. - 20. E^((107607675 k^2)/10902937) + 
      13. E^((215215350 k^2)/
       10902937)] (-((0.333333 E^(9.8696 k^2))/(
        0.666667 - 1. E^(9.8696 k^2))) - (
       0.333333 Sqrt[
        8. - 20. E^(9.8696 k^2) + 13. E^(19.7392 k^2)])/(-0.666667 + 
        1. E^(9.8696 k^2)))^n - 
    1. E^(9.8696 k^2) (-((0.333333 E^(9.8696 k^2))/(
        0.666667 - 1. E^(9.8696 k^2))) + (
       0.333333 Sqrt[
        8. - 20. E^(9.8696 k^2) + 13. E^(19.7392 k^2)])/(-0.666667 + 
        1. E^(9.8696 k^2)))^n + 
    1. Sqrt[8. - 20. E^((107607675 k^2)/10902937) + 
      13. E^((215215350 k^2)/
       10902937)] (-((0.333333 E^(9.8696 k^2))/(
        0.666667 - 1. E^(9.8696 k^2))) + (
       0.333333 Sqrt[
        8. - 20. E^(9.8696 k^2) + 13. E^(19.7392 k^2)])/(-0.666667 + 
        1. E^(9.8696 k^2)))^n) Sin[7 \[Pi] x] + 
 1/Sqrt[8. - 20. E^((107607675 k^2)/10902937) + 
   13. E^((215215350 k^2)/10902937)]
   0.000353926 2^-n (E^(-799.438 (-(n/4) + t)) - 
    0.0300211 (1 - E^(-799.438 (-(n/4) + t)))) (1. E^(
     9.8696 k^2) (-((0.333333 E^(9.8696 k^2))/(
        0.666667 - 1. E^(9.8696 k^2))) - (
       0.333333 Sqrt[
        8. - 20. E^(9.8696 k^2) + 13. E^(19.7392 k^2)])/(-0.666667 + 
        1. E^(9.8696 k^2)))^n + 
    1. Sqrt[8. - 20. E^((107607675 k^2)/10902937) + 
      13. E^((215215350 k^2)/
       10902937)] (-((0.333333 E^(9.8696 k^2))/(
        0.666667 - 1. E^(9.8696 k^2))) - (
       0.333333 Sqrt[
        8. - 20. E^(9.8696 k^2) + 13. E^(19.7392 k^2)])/(-0.666667 + 
        1. E^(9.8696 k^2)))^n - 
    1. E^(9.8696 k^2) (-((0.333333 E^(9.8696 k^2))/(
        0.666667 - 1. E^(9.8696 k^2))) + (
       0.333333 Sqrt[
        8. - 20. E^(9.8696 k^2) + 13. E^(19.7392 k^2)])/(-0.666667 + 
        1. E^(9.8696 k^2)))^n + 
    1. Sqrt[8. - 20. E^((107607675 k^2)/10902937) + 
      13. E^((215215350 k^2)/
       10902937)] (-((0.333333 E^(9.8696 k^2))/(
        0.666667 - 1. E^(9.8696 k^2))) + (
       0.333333 Sqrt[
        8. - 20. E^(9.8696 k^2) + 13. E^(19.7392 k^2)])/(-0.666667 + 
        1. E^(9.8696 k^2)))^n) Sin[9 \[Pi] x]

rr = Array[mm, 10];

For[i = 1, i <= 8, i++, 
 mm[i] = Plot3D[u[x, t, i], {x, 0, 1}, {t, i, i + 1}, 
   PlotRange -> All]]

In[1]:= Show[Table[mm[i], {i, 1, 8}]]

During evaluation of In[1]:= Show::gcomb: Could not combine the graphics objects in Show[{mm[1],mm[2],mm[3],mm[4],mm[5],mm[6],mm[7],mm[8]}].



In[5]:= 

Syntax::sntxf: "-" cannot be followed by "[\[Pi]^2]".
Attachments:
POSTED BY: zekeriya Özkan

Please, help to correct error and to draw the figure of TJMCS_001.nb !!!

Attachments:
POSTED BY: zekeriya Özkan
(2 - Exp[-N[Pi^2 ] k^2]) T[n + 2] - 
  T[n + 1] - (1 - Exp[- N[Pi^2 ] k^2]) T[n] == 0

-(1 - E^(-9.8696 k^2)) T[n] - 
  T[1 + n] + (2 - E^(-9.8696 k^2)) T[2 + n] == 0


RSolve[{(3 - 2 Exp[-N[Pi^2 ] k^2]) T[n + 2] - 
    T[n + 1] - (1 - Exp[- N[Pi^2 ] k^2]) T[n] == 0, T[0] == 1, 
  T[1] == 0}, T[n], n]

{{T[n] -> 
   1/Sqrt[8. - 20. E^((107607675 k^2)/10902937) + 
     13. E^((215215350 k^2)/10902937)]
     0.5 2^-n (1. E^(
       9.8696 k^2) (-((0.333333 E^(9.8696 k^2))/(
          0.666667 - 1. E^(9.8696 k^2))) - (
         0.333333 Sqrt[
          8. - 20. E^(9.8696 k^2) + 
           13. E^(19.7392 k^2)])/(-0.666667 + 1. E^(9.8696 k^2)))^n + 
      1. Sqrt[8. - 20. E^((107607675 k^2)/10902937) + 
        13. E^((215215350 k^2)/
         10902937)] (-((0.333333 E^(9.8696 k^2))/(
          0.666667 - 1. E^(9.8696 k^2))) - (
         0.333333 Sqrt[
          8. - 20. E^(9.8696 k^2) + 
           13. E^(19.7392 k^2)])/(-0.666667 + 1. E^(9.8696 k^2)))^n - 
      1. E^(9.8696 k^2) (-((0.333333 E^(9.8696 k^2))/(
          0.666667 - 1. E^(9.8696 k^2))) + (
         0.333333 Sqrt[
          8. - 20. E^(9.8696 k^2) + 
           13. E^(19.7392 k^2)])/(-0.666667 + 1. E^(9.8696 k^2)))^n + 
      1. Sqrt[8. - 20. E^((107607675 k^2)/10902937) + 
        13. E^((215215350 k^2)/
         10902937)] (-((0.333333 E^(9.8696 k^2))/(
          0.666667 - 1. E^(9.8696 k^2))) + (
         0.333333 Sqrt[
          8. - 20. E^(9.8696 k^2) + 
           13. E^(19.7392 k^2)])/(-0.666667 + 1. E^(9.8696 k^2)))^n)}}

T[n_] = 1/Sqrt[
   8.` - 19.999999999999996` E^((107607675 k^2)/10902937) + 
    13.` E^((215215350 k^2)/10902937)]
    0.5` 2^-n (1.` E^(
      9.869604401089358` k^2) (-((
         0.3333333333333333` E^(9.869604401089358` k^2))/(
         0.6666666666666666` - 1.` E^(9.869604401089358` k^2))) - (
        0.3333333333333333` Sqrt[
         8.` - 19.999999999999996` E^(9.869604401089358` k^2) + 
          13.` E^(19.739208802178716` k^2)])/(-0.6666666666666666` + 
         1.` E^(9.869604401089358` k^2)))^n + 
     1.` Sqrt[
      8.` - 19.999999999999996` E^((107607675 k^2)/10902937) + 
       13.` E^((215215350 k^2)/
        10902937)] (-((
         0.3333333333333333` E^(9.869604401089358` k^2))/(
         0.6666666666666666` - 1.` E^(9.869604401089358` k^2))) - (
        0.3333333333333333` Sqrt[
         8.` - 19.999999999999996` E^(9.869604401089358` k^2) + 
          13.` E^(19.739208802178716` k^2)])/(-0.6666666666666666` + 
         1.` E^(9.869604401089358` k^2)))^n - 
     1.` E^(9.869604401089358` k^2) (-((
         0.3333333333333333` E^(9.869604401089358` k^2))/(
         0.6666666666666666` - 1.` E^(9.869604401089358` k^2))) + (
        0.3333333333333333` Sqrt[
         8.` - 19.999999999999996` E^(9.869604401089358` k^2) + 
          13.` E^(19.739208802178716` k^2)])/(-0.6666666666666666` + 
         1.` E^(9.869604401089358` k^2)))^n + 
     1.` Sqrt[
      8.` - 19.999999999999996` E^((107607675 k^2)/10902937) + 
       13.` E^((215215350 k^2)/
        10902937)] (-((
         0.3333333333333333` E^(9.869604401089358` k^2))/(
         0.6666666666666666` - 1.` E^(9.869604401089358` k^2))) + (
        0.3333333333333333` Sqrt[
         8.` - 19.999999999999996` E^(9.869604401089358` k^2) + 
          13.` E^(19.739208802178716` k^2)])/(-0.6666666666666666` + 
         1.` E^(9.869604401089358` k^2)))^n);

T[k_, t_] = (1 - Exp[-N[Pi^2 ] k^2 (t - n)]) T[n - 1] + T[n] - 
  2 (1 - Exp[-N[Pi^2 ] k^2 (t - n)]) T[n + 1]

(0.5 2^(1 - 
     n) (1 - E^(-9.8696 k^2 (-n + t))) (1. E^(
       9.8696 k^2) (-((0.333333 E^(9.8696 k^2))/(
          0.666667 - 1. E^(9.8696 k^2))) - (
         0.333333 Sqrt[
          8. - 20. E^(9.8696 k^2) + 
           13. E^(19.7392 k^2)])/(-0.666667 + 
          1. E^(9.8696 k^2)))^(-1 + n) + 
      1. Sqrt[8. - 20. E^((107607675 k^2)/10902937) + 
        13. E^((215215350 k^2)/
         10902937)] (-((0.333333 E^(9.8696 k^2))/(
          0.666667 - 1. E^(9.8696 k^2))) - (
         0.333333 Sqrt[
          8. - 20. E^(9.8696 k^2) + 
           13. E^(19.7392 k^2)])/(-0.666667 + 
          1. E^(9.8696 k^2)))^(-1 + n) - 
      1. E^(9.8696 k^2) (-((0.333333 E^(9.8696 k^2))/(
          0.666667 - 1. E^(9.8696 k^2))) + (
         0.333333 Sqrt[
          8. - 20. E^(9.8696 k^2) + 
           13. E^(19.7392 k^2)])/(-0.666667 + 
          1. E^(9.8696 k^2)))^(-1 + n) + 
      1. Sqrt[8. - 20. E^((107607675 k^2)/10902937) + 
        13. E^((215215350 k^2)/
         10902937)] (-((0.333333 E^(9.8696 k^2))/(
          0.666667 - 1. E^(9.8696 k^2))) + (
         0.333333 Sqrt[
          8. - 20. E^(9.8696 k^2) + 
           13. E^(19.7392 k^2)])/(-0.666667 + 
          1. E^(9.8696 k^2)))^(-1 + n)))/(Sqrt[
   8. - 20. E^((107607675 k^2)/10902937) + 
    13. E^((215215350 k^2)/
     10902937)]) + (0.5 2^-n (1. E^(
       9.8696 k^2) (-((0.333333 E^(9.8696 k^2))/(
          0.666667 - 1. E^(9.8696 k^2))) - (
         0.333333 Sqrt[
          8. - 20. E^(9.8696 k^2) + 
           13. E^(19.7392 k^2)])/(-0.666667 + 1. E^(9.8696 k^2)))^n + 
      1. Sqrt[8. - 20. E^((107607675 k^2)/10902937) + 
        13. E^((215215350 k^2)/
         10902937)] (-((0.333333 E^(9.8696 k^2))/(
          0.666667 - 1. E^(9.8696 k^2))) - (
         0.333333 Sqrt[
          8. - 20. E^(9.8696 k^2) + 
           13. E^(19.7392 k^2)])/(-0.666667 + 1. E^(9.8696 k^2)))^n - 
      1. E^(9.8696 k^2) (-((0.333333 E^(9.8696 k^2))/(
          0.666667 - 1. E^(9.8696 k^2))) + (
         0.333333 Sqrt[
          8. - 20. E^(9.8696 k^2) + 
           13. E^(19.7392 k^2)])/(-0.666667 + 1. E^(9.8696 k^2)))^n + 
      1. Sqrt[8. - 20. E^((107607675 k^2)/10902937) + 
        13. E^((215215350 k^2)/
         10902937)] (-((0.333333 E^(9.8696 k^2))/(
          0.666667 - 1. E^(9.8696 k^2))) + (
         0.333333 Sqrt[
          8. - 20. E^(9.8696 k^2) + 
           13. E^(19.7392 k^2)])/(-0.666667 + 1. E^(9.8696 k^2)))^
       n))/(Sqrt[
   8. - 20. E^((107607675 k^2)/10902937) + 
    13. E^((215215350 k^2)/10902937)]) - (1. 2^(-1 - 
     n) (1 - E^(-9.8696 k^2 (-n + t))) (1. E^(
       9.8696 k^2) (-((0.333333 E^(9.8696 k^2))/(
          0.666667 - 1. E^(9.8696 k^2))) - (
         0.333333 Sqrt[
          8. - 20. E^(9.8696 k^2) + 
           13. E^(19.7392 k^2)])/(-0.666667 + 1. E^(9.8696 k^2)))^(
       1 + n) + 
      1. Sqrt[8. - 20. E^((107607675 k^2)/10902937) + 
        13. E^((215215350 k^2)/
         10902937)] (-((0.333333 E^(9.8696 k^2))/(
          0.666667 - 1. E^(9.8696 k^2))) - (
         0.333333 Sqrt[
          8. - 20. E^(9.8696 k^2) + 
           13. E^(19.7392 k^2)])/(-0.666667 + 1. E^(9.8696 k^2)))^(
       1 + n) - 
      1. E^(9.8696 k^2) (-((0.333333 E^(9.8696 k^2))/(
          0.666667 - 1. E^(9.8696 k^2))) + (
         0.333333 Sqrt[
          8. - 20. E^(9.8696 k^2) + 
           13. E^(19.7392 k^2)])/(-0.666667 + 1. E^(9.8696 k^2)))^(
       1 + n) + 
      1. Sqrt[8. - 20. E^((107607675 k^2)/10902937) + 
        13. E^((215215350 k^2)/
         10902937)] (-((0.333333 E^(9.8696 k^2))/(
          0.666667 - 1. E^(9.8696 k^2))) + (
         0.333333 Sqrt[

          8. - 20. E^(9.8696 k^2) + 
           13. E^(19.7392 k^2)])/(-0.666667 + 1. E^(9.8696 k^2)))^(
       1 + n)))/(Sqrt[
   8. - 20. E^((107607675 k^2)/10902937) + 
    13. E^((215215350 k^2)/10902937)])

aa[k_] = Integrate[2 (-2 x^2 + 2 x) Sin[Pi k x], {x, 0, 1}]

(8 - 8 Cos[k \[Pi]] - 4 k \[Pi] Sin[k \[Pi]])/(k^3 \[Pi]^3)


u[x_, t_, n_] = Sum[aa[k] Sin[Pi k x ] T[k, t], {k, 10}]

1/\[Pi]^3 16 (7.173*10^-6 2^-n (89039.5 (-0.868499)^n + 
        50372.1 1.53519^n) + 
     7.173*10^-6 2^(
      1 - n) (89039.5 (-0.868499)^(-1 + n) + 
        50372.1 1.53519^(-1 + n)) (1 - E^(-9.8696 (-n + t))) - 
     0.000014346 2^(-1 - 
       n) (89039.5 (-0.868499)^(1 + n) + 50372.1 1.53519^(1 + n)) (1 -
         E^(-9.8696 (-n + t)))) Sin[\[Pi] x] + 
 1/(27 \[Pi]^3)
   16 (3.67423*10^-40 2^-n (1.73826*10^39 (-0.868517)^n + 
        9.83405*10^38 1.53518^n) + 
     3.67423*10^-40 2^(
      1 - n) (1.73826*10^39 (-0.868517)^(-1 + n) + 
        9.83405*10^38 1.53518^(-1 + n)) (1 - E^(-88.8264 (-n + t))) - 
     7.34845*10^-40 2^(-1 - 
       n) (1.73826*10^39 (-0.868517)^(1 + n) + 
        9.83405*10^38 1.53518^(1 + n)) (1 - 
        E^(-88.8264 (-n + t)))) Sin[3 \[Pi] x] + 
 1/(125 \[Pi]^3)
   16 (9.64118*10^-109 2^-n (6.62445*10^107 (-0.868517)^n + 
        3.74773*10^107 1.53518^n) + 
     9.64118*10^-109 2^(
      1 - n) (6.62445*10^107 (-0.868517)^(-1 + n) + 
        3.74773*10^107 1.53518^(-1 + n)) (1 - E^(-246.74 (-n + t))) - 
     1.92824*10^-108 2^(-1 - 
       n) (6.62445*10^107 (-0.868517)^(1 + n) + 
        3.74773*10^107 1.53518^(1 + n)) (1 - 
        E^(-246.74 (-n + t)))) Sin[5 \[Pi] x] + 
 1/(343 \[Pi]^3)
   16 (1.29592*10^-211 2^-n (4.92837*10^210 (-0.868517)^n + 
        2.78818*10^210 1.53518^n) + 
     1.29592*10^-211 2^(
      1 - n) (4.92837*10^210 (-0.868517)^(-1 + n) + 
        2.78818*10^210 1.53518^(-1 + n)) (1 - 
        E^(-483.611 (-n + t))) - 
     2.59183*10^-211 2^(-1 - 
       n) (4.92837*10^210 (-0.868517)^(1 + n) + 
        2.78818*10^210 1.53518^(1 + n)) (1 - 
        E^(-483.611 (-n + t)))) Sin[7 \[Pi] x] + 
 1/(729 \[Pi]^3)
   16 (8.922883060168622*10^-349 2^-n (7.157720713693157*10^347 \
(-0.868517091821330)^n + 
        4.049419324530120*10^347 1.535183758487996^n) + 
     8.922883060168622*10^-349 2^(
      1 - n) (7.157720713693157*10^347 (-0.868517091821330)^(-1 + 
          n) + 4.049419324530120*10^347 1.535183758487996^(-1 + 
          n)) (1 - E^(-799.438 (-n + t))) - 
     1.784576612033724*10^-348 2^(-1 - 
       n) (7.157720713693157*10^347 (-0.868517091821330)^(1 + n) + 
        4.049419324530120*10^347 1.535183758487996^(1 + n)) (1 - 
        E^(-799.438 (-n + t)))) Sin[9 \[Pi] x]

rr = Array[mm, 10];

For[i = 1, i <= 8, i++, 
 mm[i] = Plot3D[u[x, t, i], {x, 0, 1}, {t, i, i + 1}, 
   PlotRange -> All]]

Show[Table[mm[i], {i, 1, 8}]]
POSTED BY: zekeriya Özkan

How can i try a fresh kernel?

POSTED BY: zekeriya Özkan

Works fine for me. Try a fresh kernel.

POSTED BY: Rohit Namjoshi
Reply to this discussion
Community posts can be styled and formatted using the Markdown syntax.
Reply Preview
Attachments
Remove
or Discard

Group Abstract Group Abstract