Does not work because Integrate can't you give a Antiderivative.
    Integrate[Sqrt[2*m*l^2/(H + m*g*l*Cos[p[t]])], p[t]]
    (* No way *)
We can solve like this:
      ClearAll["`*"]; Remove["`*"];
      l = 1;
      b = 0;
      m = 1;
      g = 9.81;
      ps = 0;
      dps = 1;
      H = 1/2*m*l^2*dps^2 - m*g*l*Cos[ps];
      EQ = D[b + t == 
         1/2*Integrate[Sqrt[2*m*l^2/(H + m*g*l*Cos[p[t]])], p[t]], t]
      s = DSolve[{EQ, p[0] == 0}, p[t], {t, 0, 100}] // 
        Quiet(*I assume a Initial condition !!! *)
      Plot[p[t] /. s, {t, 0, 100}, WorkingPrecision -> 20, 
       PlotPoints -> 100]
     Plot[p[t] /. s, {t, 0, 2}, PlotLabel -> "Analytically"]
     Plot[p[t] /. s, {t, 0, 1/2}, PlotLabel -> "Analytically"]
     s1 = NDSolve[{EQ, p[0] == 0}, p, {t, 0, 1/2}, 
        Method -> 
         "LinearlyImplicitEuler"];(*I assume a Initial condition !!! *)
     Plot[(p[t] /. s1), {t, 0, 1/2}, PlotLabel -> "Numerically"]