One can get a polynomial in x
using GroebnerBasis
.
gbx = First[
GroebnerBasis[(26 + 18 x)/(2 Sqrt[91 + 26 x + 9 x^2]) + (33 +
64 x)/(2 Sqrt[70 + 33 x + 32 x^2]) + (39 +
74 x)/(2 Sqrt[49 + 39 x + 37 x^2]) + (40 +
132 x)/(2 Sqrt[8 + 40 x + 66 x^2]) + (91 +
190 x)/(2 Sqrt[90 + 91 x + 95 x^2]), x]];
It is not small.
Exponent[gbx, x]
Max[Abs[CoefficientList[gbx, x]]]
(* Out[610]= 80
Out[611]= \
1110276819753660237648054091530651383250064170279077722050580451636841\
585205837760192206271706180210400 *)
There are 80 roots. I'll just show the real ones.
N[Select[NSolveValues[gbx == 0, x, WorkingPrecision -> 100], Im[#] == 0 &]]
(* Out[612]= {-3.81511, -1.94173, -1.39884, -1.36244, -0.926541, \
-0.854442, -0.384779, -0.363983, -0.350656, -0.349146, -0.331095, \
-0.325256, -0.322182, -0.310507, -0.292343, -0.282015, -0.275535, \
-0.265719, -0.222805, -0.146951, 0.0258104, 0.455657} *)