Group Abstract Group Abstract

Message Boards Message Boards

0
|
4.8K Views
|
4 Replies
|
2 Total Likes
View groups...
Share
Share this post:

Unexpected result from FourierTransform?

Posted 2 years ago

I have try to do a Fourier tranform with Mathematica for θ(t1^2 + t2^2 + t3^2 - a), where a>0 and θ(x) is the Heaviside theta function. It seems that the Mathematica gave an incorrect answer. The code was,

FourierTransform[
 HeavisideTheta[t1^2 + t2^2 + t3^2 - a], {t1, t2, t3}, {ω1, ω2, ω3}, 
 Assumptions -> a > 0]

and the result gaven by Mathematica was (2π)^(3/2) δ(ω1) δ(ω2) δ(ω3). However, as definition, the Fourier transform for θ(t1^2 + t2^2 + t3^2-a) is,

enter image description here

where ω={ω1,ω2,ω3}.
The last item of I2(ω) is not zero. I'd like to know from which the problem arisen.

Thank you very much for your help.

POSTED BY: Jianhua Yang
4 Replies

Maybe:

 InverseLaplaceTransform[
  FourierTransform[
   LaplaceTransform[HeavisideTheta[t1^2 + t2^2 + t3^2 - a], a, s], {t1,
     t2, t3}, {\[Omega]1, \[Omega]2, \[Omega]3}, 
   Assumptions -> s > 0], s, a]

  (*2 Sqrt[2] \[Pi]^(3/2)
     DiracDelta[\[Omega]1] DiracDelta[\[Omega]2] DiracDelta[\[Omega]3] \
  - (a^(3/4) (2 Cosh[
        Sqrt[a] Sqrt[-\[Omega]1^2 - \[Omega]2^2 - \[Omega]3^2]] - (
      2 Sinh[Sqrt[a] Sqrt[-\[Omega]1^2 - \[Omega]2^2 - \[Omega]3^2]])/(
      Sqrt[a] Sqrt[-\[Omega]1^2 - \[Omega]2^2 - \[Omega]3^2])))/(
   Sqrt[2 \[Pi]] Sqrt[
    Sqrt[a] Sqrt[-\[Omega]1^2 - \[Omega]2^2 - \[Omega]3^2]] \
  (-\[Omega]1^2 - \[Omega]2^2 - \[Omega]3^2)^(3/4))*)
POSTED BY: Mariusz Iwaniuk
Posted 2 years ago
POSTED BY: Jianhua Yang

My Mathematica 13.2 result is mathematical nonsense

FourierTransform[  HeavisideTheta[t1^2 + t2^2 + t3^2 - a],
       {t1, t2,  t3},
       {\[Omega]1, \[Omega]2, \[Omega]3} ]

2 Sqrt[2] \[Pi]^(3/2) DiracDelta[\[Omega]1] DiracDelta[\[Omega]2] DiracDelta[\[Omega]3]

The problem is the transformation from cartesian to spherical coordinates.

By spherical symmetry, the problem can be simplified to the simple choice of the result vector

\[Omega]  =  {0 ,0 , \Omega3} 

Then you have to calculate the integral over the z-axis with

z=cos theta,  dz = sin \theta d\theta

2 Pi \Integrate[  t^2 * Exp[ I \[Omega  ] t  z ]  ,{z,-1,1}, {t,a, Infinity}

Keep in mind, this is a spherical distribution in spherical coordinates, where \CapitalOmega is the absolute value of the cartesian vector \omega, tas a map onto the complex numbers to be applied onto smooth functions with compact support, that projects to the mass outside of a sphere.

In order to get the limits, a cut-off factor of the t-integral has to be introduced

t -> exp[-t^2/s^2]/\sqrt[2 PI s^2] 

The

\int_a^Infinity  t^2 Exp[ i \omega t ]

does not make any sense.

Perhaps, anywhere the idea is introduced errorneously, that

Fourier[  t^n   f[ t ] , t ,  omega  ]  =  D[  Fourier[  f[ t  ] ,  t,  \omega  ] ,  { \omega, n }  ] 

The formula is not applicable of course, if a non-constant measure of integration is part of the game.

POSTED BY: Roland Franzius
Posted 2 years ago

Thank you very much for your reply.

POSTED BY: Jianhua Yang
Reply to this discussion
Community posts can be styled and formatted using the Markdown syntax.
Reply Preview
Attachments
Remove
or Discard