Group Abstract Group Abstract

Message Boards Message Boards

Symbolic computation using "Reduce" does not give a result

Posted 2 years ago

Firstly, I have proved [Gamma] = [Beta]^2/12 is one of the solutions of (A12 P312 + A13 P213 + A23 P123)/P123123 + A12 A13 A23==0

In[1]:= \[Gamma] = \[Beta]^2/12;
l1 = 1/6 (Sqrt[\[Beta]^2 \[Omega]1^2 - 12 \[Gamma] \[Omega]1^2 - 
      12 k1^4 - 12 k1 \[Omega]1] - \[Beta] \[Omega]1);
l2 = 1/6 (Sqrt[\[Beta]^2 \[Omega]2^2 - 12 \[Gamma] \[Omega]2^2 - 
      12 k2^4 - 12 k2 \[Omega]2] - \[Beta] \[Omega]2);
l3 = 1/6 (Sqrt[\[Beta]^2 \[Omega]3^2 - 12 \[Gamma] \[Omega]3^2 - 
      12 k3^4 - 12 k3 \[Omega]3] - \[Beta] \[Omega]3);
A12 = (2 \[Gamma] \[Omega]1 \[Omega]2 + k2 (4 k1^3 + \[Omega]1) - 
   6 k1^2 k2^2 + 
   k1 (4 k2^3 + \[Omega]2) + \[Beta] (l1 \[Omega]2 + l2 \[Omega]1) + 
   6 l1 l2)/(
  2 \[Gamma] \[Omega]1 \[Omega]2 + k2 (4 k1^3 + \[Omega]1) + 
   6 k1^2 k2^2 + 
   k1 (4 k2^3 + \[Omega]2) + \[Beta] (l1 \[Omega]2 + l2 \[Omega]1) + 
   6 l1 l2);
A13 = (2 \[Gamma] \[Omega]1 \[Omega]3 + k3 (4 k1^3 + \[Omega]1) - 
   6 k1^2 k3^2 + 
   k1 (4 k3^3 + \[Omega]3) + \[Beta] (l1 \[Omega]3 + l3 \[Omega]1) + 
   6 l1 l3)/(
  2 \[Gamma] \[Omega]1 \[Omega]3 + k3 (4 k1^3 + \[Omega]1) + 
   6 k1^2 k3^2 + 
   k1 (4 k3^3 + \[Omega]3) + \[Beta] (l1 \[Omega]3 + l3 \[Omega]1) + 
   6 l1 l3);
A23 = (2 \[Gamma] \[Omega]2 \[Omega]3 + k3 (4 k2^3 + \[Omega]2) - 
   6 k2^2 k3^2 + 
   k2 (4 k3^3 + \[Omega]3) + \[Beta] (l2 \[Omega]3 + l3 \[Omega]2) + 
   6 l2 l3)/(
  2 \[Gamma] \[Omega]2 \[Omega]3 + k3 (4 k2^3 + \[Omega]2) + 
   6 k2^2 k3^2 + 
   k2 (4 k3^3 + \[Omega]3) + \[Beta] (l2 \[Omega]3 + l3 \[Omega]2) + 
   6 l2 l3);
P312 = \[Gamma] (-\[Omega]1 - \[Omega]2 + \[Omega]3)^2 + (-k1 - k2 + 
      k3) (-\[Omega]1 - \[Omega]2 + \[Omega]3) + (-k1 - k2 + 
     k3)^4 + \[Beta] (-l1 - l2 + 
      l3) (-\[Omega]1 - \[Omega]2 + \[Omega]3) + 3 (-l1 - l2 + l3)^2;
P213 = \[Gamma] (-\[Omega]1 + \[Omega]2 - \[Omega]3)^2 + (-k1 + k2 - 
      k3) (-\[Omega]1 + \[Omega]2 - \[Omega]3) + (-k1 + k2 - 
     k3)^4 + \[Beta] (-l1 + l2 - 
      l3) (-\[Omega]1 + \[Omega]2 - \[Omega]3) + 3 (-l1 + l2 - l3)^2;
P123 = \[Gamma] (\[Omega]1 - \[Omega]2 - \[Omega]3)^2 + (k1 - k2 - 
      k3) (\[Omega]1 - \[Omega]2 - \[Omega]3) + (k1 - k2 - 
     k3)^4 + \[Beta] (l1 - l2 - 
      l3) (\[Omega]1 - \[Omega]2 - \[Omega]3) + 3 (l1 - l2 - l3)^2;
P123123 = \[Gamma] (\[Omega]1 + \[Omega]2 + \[Omega]3)^2 + (k1 + k2 + 
      k3) (\[Omega]1 + \[Omega]2 + \[Omega]3) + (k1 + k2 + 
     k3)^4 + \[Beta] (l1 + l2 + 
      l3) (\[Omega]1 + \[Omega]2 + \[Omega]3) + 3 (l1 + l2 + l3)^2;
Simplify[(A12 P312 + A13 P213 + A23 P123)/P123123 + A12 A13 A23 == 0]

Out[12]= True

Next, I want to solve the relation between [Beta] and [Gamma] through ``Reduce". However, it took too much time, and failed to give the output in finite time. How can I get the relation between [Beta] and [Gamma]?

ClearAll[\[Beta], \[Gamma]]
l1 = 1/6 (Sqrt[\[Beta]^2 \[Omega]1^2 - 12 \[Gamma] \[Omega]1^2 - 
      12 k1^4 - 12 k1 \[Omega]1] - \[Beta] \[Omega]1);
l2 = 1/6 (Sqrt[\[Beta]^2 \[Omega]2^2 - 12 \[Gamma] \[Omega]2^2 - 
      12 k2^4 - 12 k2 \[Omega]2] - \[Beta] \[Omega]2);
l3 = 1/6 (Sqrt[\[Beta]^2 \[Omega]3^2 - 12 \[Gamma] \[Omega]3^2 - 
      12 k3^4 - 12 k3 \[Omega]3] - \[Beta] \[Omega]3);
A12 = (2 \[Gamma] \[Omega]1 \[Omega]2 + k2 (4 k1^3 + \[Omega]1) - 
   6 k1^2 k2^2 + 
   k1 (4 k2^3 + \[Omega]2) + \[Beta] (l1 \[Omega]2 + l2 \[Omega]1) + 
   6 l1 l2)/(
  2 \[Gamma] \[Omega]1 \[Omega]2 + k2 (4 k1^3 + \[Omega]1) + 
   6 k1^2 k2^2 + 
   k1 (4 k2^3 + \[Omega]2) + \[Beta] (l1 \[Omega]2 + l2 \[Omega]1) + 
   6 l1 l2);
A13 = (2 \[Gamma] \[Omega]1 \[Omega]3 + k3 (4 k1^3 + \[Omega]1) - 
   6 k1^2 k3^2 + 
   k1 (4 k3^3 + \[Omega]3) + \[Beta] (l1 \[Omega]3 + l3 \[Omega]1) + 
   6 l1 l3)/(
  2 \[Gamma] \[Omega]1 \[Omega]3 + k3 (4 k1^3 + \[Omega]1) + 
   6 k1^2 k3^2 + 
   k1 (4 k3^3 + \[Omega]3) + \[Beta] (l1 \[Omega]3 + l3 \[Omega]1) + 
   6 l1 l3);
A23 = (2 \[Gamma] \[Omega]2 \[Omega]3 + k3 (4 k2^3 + \[Omega]2) - 
   6 k2^2 k3^2 + 
   k2 (4 k3^3 + \[Omega]3) + \[Beta] (l2 \[Omega]3 + l3 \[Omega]2) + 
   6 l2 l3)/(
  2 \[Gamma] \[Omega]2 \[Omega]3 + k3 (4 k2^3 + \[Omega]2) + 
   6 k2^2 k3^2 + 
   k2 (4 k3^3 + \[Omega]3) + \[Beta] (l2 \[Omega]3 + l3 \[Omega]2) + 
   6 l2 l3);
P312 = \[Gamma] (-\[Omega]1 - \[Omega]2 + \[Omega]3)^2 + (-k1 - k2 + 
      k3) (-\[Omega]1 - \[Omega]2 + \[Omega]3) + (-k1 - k2 + 
     k3)^4 + \[Beta] (-l1 - l2 + 
      l3) (-\[Omega]1 - \[Omega]2 + \[Omega]3) + 3 (-l1 - l2 + l3)^2;
P213 = \[Gamma] (-\[Omega]1 + \[Omega]2 - \[Omega]3)^2 + (-k1 + k2 - 
      k3) (-\[Omega]1 + \[Omega]2 - \[Omega]3) + (-k1 + k2 - 
     k3)^4 + \[Beta] (-l1 + l2 - 
      l3) (-\[Omega]1 + \[Omega]2 - \[Omega]3) + 3 (-l1 + l2 - l3)^2;
P123 = \[Gamma] (\[Omega]1 - \[Omega]2 - \[Omega]3)^2 + (k1 - k2 - 
      k3) (\[Omega]1 - \[Omega]2 - \[Omega]3) + (k1 - k2 - 
     k3)^4 + \[Beta] (l1 - l2 - 
      l3) (\[Omega]1 - \[Omega]2 - \[Omega]3) + 3 (l1 - l2 - l3)^2;
P123123 = \[Gamma] (\[Omega]1 + \[Omega]2 + \[Omega]3)^2 + (k1 + k2 + 
      k3) (\[Omega]1 + \[Omega]2 + \[Omega]3) + (k1 + k2 + 
     k3)^4 + \[Beta] (l1 + l2 + 
      l3) (\[Omega]1 + \[Omega]2 + \[Omega]3) + 3 (l1 + l2 + l3)^2;
Reduce[(A12 P312 + A13 P213 + A23 P123)/P123123 + A12 A13 A23 == 
  0, {\[Beta], \[Gamma]}, Reals]

This question is also posted at https://mathematica.stackexchange.com/questions/289814/symbolic-computation-using-reduce-does-not-give-a-result

Reply to this discussion
Community posts can be styled and formatted using the Markdown syntax.
Reply Preview
Attachments
Remove
or Discard
Be respectful. Review our Community Guidelines to understand your role and responsibilities. Community Terms of Use