Here, I want to simplify the polynomial P1
P1 == \[Beta] (\[Omega]1 l2 + \[Omega]2 l1) +
2 \[Gamma] \[Omega]1 \[Omega]2 + k1 (\[Omega]2 + 4 k2^3) +
k2 (\[Omega]1 + 4 k1^3) + 6 k1^2 k2^2 +
6 l1 l2 + (k1^4 + k2^4 + k1 \[Omega]1 + k2 \[Omega]2 + 3 l1^2 +
3 l2^2 + \[Beta] (\[Omega]1 l1 + \[Omega]2 l2) + \[Gamma] (\
\[Omega]1^2 + \[Omega]2^2))
under the conditions mentioned below
Conditions :
k1 \[Omega]1 + k1^4 +
3 l1^2 + \[Gamma] \[Omega]1^2 + \[Beta] \[Omega]1 l1 == 0 &&
k2 \[Omega]2 + k2^4 +
3 l2^2 + \[Gamma] \[Omega]2^2 + \[Beta] \[Omega]2 l2 == 0
My code is
Assuming[
k1 \[Omega]1 + k1^4 +
3 l1^2 + \[Gamma] \[Omega]1^2 + \[Beta] \[Omega]1 l1 == 0 &&
k2 \[Omega]2 + k2^4 +
3 l2^2 + \[Gamma] \[Omega]2^2 + \[Beta] \[Omega]2 l2 == 0,
Simplify[(\[Omega]1 + \[Omega]2) (k1 + k2) + (k1 + k2)^4 +
3 (l1 + l2)^2 + \[Gamma] (\[Omega]1 + \[Omega]2)^2 + \[Beta] (\
\[Omega]1 + \[Omega]2) (l1 + l2)]]
It is obvious that the conditions make
(k1^4 + k2^4 + k1 \[Omega]1 + k2 \[Omega]2 + 3 l1^2 +
3 l2^2 + \[Beta] (\[Omega]1 l1 + \[Omega]2 l2) + \[Gamma] (\[Omega]1^2 + \
\[Omega]2^2))" equal to zero.
Therefore, P1 should become "\[Beta] (\[Omega]1 l2 + \[Omega]2 l1) + 2 \[Gamma] \[Omega]1 \[Omega]2 +
k1 (\[Omega]2 + 4 k2^3) + k2 (\[Omega]1 + 4 k1^3) + 6 k1^2 k2^2 + 6 l1 l2
However, the output looks different. How can I do such thing?
It is also posted at https://mathematica.stackexchange.com/questions/289866/using-exisiting-conditions-to-simplify-the-certain-part-of-polynomial
Attachments: