The two expressions are not equivalent if you allow R_1 to be complex:
expr1 = FullSimplify[(Sqrt[1/a^2]   a   G   \[Pi]   u   Sqrt[
      a^2/(a^2 + 
\!\(\*SubsuperscriptBox[\(R\), \(1\), \(2\)]\))]   (Sqrt[a^2 + 
\!\(\*SubsuperscriptBox[\(R\), \(1\), \(2\)]\)] - Sqrt[a^2 + 
\!\(\*SubsuperscriptBox[\(R\), \(2\), \(2\)]\)]))/Sqrt[a^2 + 
\!\(\*SubsuperscriptBox[\(R\), \(2\), \(2\)]\)], 
  Assumptions -> a > 0]
expr2 = FullSimplify[(Sqrt[1/a^2]   a   G   \[Pi]   u   Sqrt[
      a^2/(a^2 + 
\!\(\*SubsuperscriptBox[\(R\), \(1\), \(2\)]\))]   (Sqrt[a^2 + 
\!\(\*SubsuperscriptBox[\(R\), \(1\), \(2\)]\)] - Sqrt[a^2 + 
\!\(\*SubsuperscriptBox[\(R\), \(2\), \(2\)]\)]))/Sqrt[a^2 + 
\!\(\*SubsuperscriptBox[\(R\), \(2\), \(2\)]\)], 
  Assumptions -> a > 0 && Subscript[R, 1] > 0]
{expr1, expr2} /. {a -> 1, Subscript[R, 1] -> 2 I, 
   Subscript[R, 2] -> 1, G -> 1, u -> 1} // N
Here is a much simpler situation exhibiting the same behaviour:
expr1 = FullSimplify[Sqrt[1/r^2]  Sqrt[r^2]]
expr2 = FullSimplify[Sqrt[1/r^2]  Sqrt[r^2] , Assumptions -> r > 0]
{expr1, expr2} /. r -> I