105951
105950
105909
105910
105911
Ok on an odometer when there are at least 3 matching numbers say 555 or two sets of repeating numbers, say 5500, then we will try to predict when each occur chronologically on the odometer.
Sure you could just fill in the numbers with the corresponding numbers. But imagine these numbers were related to Prime distribution. The pattern is harder to see with the odometer as it moves linearly.
Imagine you have a regular odometer. It goes zero through nine. So in the single-digit place of the odometer (the start of counting), you note that 3, 5, 7 are Prime. So now you go to the tens-digit. And note that 3+1 or 3+3 or 3+5 or 3+7 are eliminated as Prime. To get another Prime number you would have to add an even number to 3, 5, or 7.
Of course adding an even number doesn’t always result in a Prime. This is just a graphical representation of a sieve. But just as repeating numbers in the odometer are hard to predict linearly throughout the revolutions of the odometer, are we not doing the same thing when looking for patterns in Prime numbers?
I study Prime numbers because I like finding patterns. Patterns can confuse or look like they could be there, but patterns are what we see in math. I might have stretched the truth when I claimed RSA was in trouble, but that one-way function is why I started all this math in the first place. The odometer sieve would require a lot of calculation. Again it would only show what is going on. It is the same with my graphs. I can only estimate where the semi-Prime factor is on a graph. Graphing 128-bit numbers and analyzing the graph is a challenge, but necessary to prove as the curve on the graph approaches zero x approaches the smaller Prime factor.
That is where I believe if the graph holds true, for larger N’s, it will be superior to brute force.
But as the graph becomes larger and more difficult to evaluate so does choosing an N. I have read that if N becomes too large, the enciphering of the message becomes too cumbersome.
In a future post I will be sending a graph. But It is important for anyone reading this to share if they had any results with the graph. I have tried to make the graph more useful (less test values) by inverting the equation.