0
|
137 Views
|
|
2 Total Likes
View groups...
Share
GROUPS:

# Counting common sublists in two variables

Posted 10 days ago
 nn=Range[1,10000000] n=Select[nn,PrimeQ,(500)] n2=Select[nn,IntegerQ,(500)] k=(n^2)-1+(n)+(2-4n) d=n^4-1+n^2 c=n^3+2 e=Mod[c,3] f=Mod[d,3] g=Mod[k,3] h=Mod[c,7] i=Mod[d,7] j=Mod[k,7] l=Mod[c,4] m=Mod[d,4] o=Mod[k,4] r=Mod[c,5] s=Mod[d,5] t=Mod[k,5] QQ=Transpose[{e,f,g,h,i,j,l,m,o,r,s,t}] hh=2000 n2=Select[nn,OddQ,(hh)] k1=(n2^2)-1+(n2)+(2-4n2) d1=n2^4-1+n2^2 c1=n2^3+2 e1=Mod[c1,3] f1=Mod[d1,3] g1=Mod[k1,3] h1=Mod[c1,7] i1=Mod[d1,7] j1=Mod[k1,7] l1=Mod[c1,4] m1=Mod[d1,4] o1=Mod[k1,4] r1=Mod[c1,5] s1=Mod[d1,5] t1=Mod[k1,5] pp1=Transpose[{e1,f1,g1,h1,i1,j1,l1,m1,o1,r1,s1,t1}] number of sublists = Count[pp1, QQ, {2}]  How can i make it work I want to count the sublists that appear in QQ that are also present in pp1 , QQ is list of sublists of mod for prime numbers that only appear when the number is prime , and in pp1 that are some sublists that match th sublists when the number odd is also prime... please help me...
 Intersection[pp1, QQ] // Length