Hi, I am trying to express the following wave equation, which is expressed in Cartesian coordinates in Cylindrical coordinates:
\!\(\*SubsuperscriptBox[\(\[Del]\), \({x, y, z}\), \(2\)]\(Ez[x, y, z]\)\) + n^2 \[Omega] k0^2 Ez[x, y, z]
When I used FieldTransformed[], I get a result in unexpected format. Is there a simplified way to get the following, well known, wave equations expressed in Cylindrical coordinates starting from the Cartesian ones:
D[Ez[\[Rho], \[Phi], z], {\[Rho], 2}] +
1/\[Rho] D[Ez[\[Rho], \[Phi], z], \[Rho]] +
1/\[Rho]^2 D[Ez[\[Rho], \[Phi], z], {\[Phi], 2}] +
D[Ez[\[Rho], \[Phi], z], {z, 2}] + n^2 k0^2 Ez[\[Rho], \[Phi], z]
Thanks