Message Boards Message Boards

0
|
662 Views
|
8 Replies
|
6 Total Likes
View groups...
Share
Share this post:

Help with complex integral

Posted 1 month ago

Hi, I am trying to solve a complicated integral for my project and until now I couldn't solve it by Mathematica. Can you help me to find a way to solve it? I send the code that I have written.
Thank you for helping me solve this integral

k = 0.235;
q = 1;
Ki = 910980;
\[Theta]e =   90 Degree; (*\[Theta]e is a variable that takes different values*)

(*Step 2:Define \[Theta]1 and Kf*)
\[Theta]1 = ArcCos[(Ki - k Cos[\[Theta]e])/Kf];
Kf = Sqrt[Ki^2 + k^2 + k *Ki *Cos[\[Theta]e]];

(*Step 3:Define vectors Kf,Ki,and q*)
KfVec = {Kf Sin[\[Theta]1], 0, Kf Cos[\[Theta]1]};
KiVec = {0, 0, Ki};
qVec = KiVec - KfVec;(*Vector q*)
kVec = {k Sin[\[Theta]e], 0, k Cos[\[Theta]e]};
(*Step 4:Calculate dot products*)
KfDotKi = Dot[KfVec, KiVec];
KfDotq = Dot[KfVec, qVec];
qDotKi = Dot[qVec, KiVec];
kDotq = Dot[qVec, kVec];
\[Theta]2 = ArcCos[kDotq/k*q];
q' = k^2 + q^2 - 2*k*q*Cos[\[Theta]2];
q2 = Dot[KfVec, (kVec - qVec)];
(*Step 5:Define A,B,C,D*)
A = (q^2 + \[Lambda]^2) (k^2 + \[Beta]^2/
      4) x^2 + (\[Beta] (q^2 + \[Lambda]^2) + 
     2 \[Lambda] (k^2 + \[Beta]^2/4)) x + (q' + (\[Lambda] + \[Beta]/
        2)^2)
B = -2 (I \[Lambda] Kf - KfDotq) (k^2 + \[Beta]^2/4) x^2 - 
  2 (( \[Beta] (I \[Lambda] Kf - KfDotq) + 
      I (k^2 + \[Beta]^2/4) Kf)) x - 
  2 (q2 + I (\[Lambda] + \[Beta]/2) Kf)

cExpr = -2 (k^2 + I \[Beta]/2 k) (q^2 + \[Lambda]^2) x^2 - 
  2 ((2 \[Lambda] (k^2 + I \[Beta]/2 k) + 
      I (q^2 + \[Lambda]^2) k) ) x - 
  2 (k^2 + I (\[Lambda] + \[Beta]/2) k - kDotq)
dExpr = 4 I \[Lambda] (KfDotq) (k^2 + I \[Beta]/2 k) x^2 + 
  4 (I (k + \[Beta]/2) k Kf + I \[Lambda] KfDotq) x + (2 *
     Dot[KfVec, kVec] - k Kf)
simplifiedA = Simplify[A];
simplifiedB = Simplify[B];
simplifiedcExpr = Simplify[cExpr];
simplifieddExpr = Simplify[dExpr];
(*Define the integrand*)

mT = 7*1873;(*amu*)
mp = 16*1873;(*amu*)
\[Mu]pT = (mT*mp)/(mT + mp)
zp = 6;
zT = 2.8683;
\[Alpha]pT = \!\(TraditionalForm\`\[Mu]pT*zp*zT/Kf\) 
\[Alpha]T1 = 1*2.8683/0.235simplifiedA = Simplify[A];
simplifiedB = Simplify[B];
simplifiedcExpr = Simplify[cExpr];
simplifieddExpr = Simplify[dExpr];
integrand = (1/  A)*((A/(A + B))^(-I \[Alpha]pT))*((A/(A +  cExpr))^(-I \[Alpha]T1))*
   Hypergeometric2F1[-I \[Alpha]pT, -I \[Alpha]T1, 
    1, (B  cExpr - A dExpr)/((A + B) (A + cExpr))];
integrandsimple = FullSimplify[integrand];
F[_\[Beta], \[Lambda]] = 
Integrate[integrandsimple, {x, 0, \[Infinity]}, 
Assumptions -> {\[Lambda] > 0, \[Beta] > 0}]
POSTED BY: Minaa Askari
8 Replies
Posted 1 month ago

Hello Thanks for correcting the code. This is the integral that we obtained by simplifying, and in solving the integral in the articles, the range is from zero to infinity. We actually want to obtain the transition amplitude in the single ionization of the lithium atom, and the transition amplitude is obtained from the integral of which this integral is a part.

POSTED BY: Minaa Askari

POSTED BY: Mariusz Iwaniuk
Posted 1 month ago

Hello ,I thanks for your answer. By plotting the function, it seems that the function diverges in this interval. Right? We used several rules to finally arrive at the simplest form of the integral like that and After taking the integral, we must take the derivative with respect to Beta and Landa, and betha=1.8683 then the limit of the term for Landa tends to zero from positive values. in 2F1(a,b,c,z i find the condition for Convergence :abs(x)<1 this information can help to solve problem? and for our project in one essay i had this The obtained Gaussian hypergeometric function is much more useful for numerical solution due to its symmetry compared to αT"1" and αPT

POSTED BY: Updating Name
Posted 1 month ago

Hello again. I ran the code on my system but it gives this error: The integrand integrand[1,1,x] has evaluated to non-numerical values for all sampling points in the region with boundaries {{[Infinity],0.}}. what is the reason?!

POSTED BY: Minaa Askari

for me works fine on Mathematica 14.1.

Try:

    ClearAll["`*"]; Remove["`*"];
    (*code above*)
    integrand[1, 1, x] 
     (*1/(136627 + 104418 x + 
      24418 x^2)40000 ((
       136627 + 104418 x + 
        24418 x^2)/((127791 - 
          28200 I) + (95582 - 56400 I) x + (15582 - 
           18800 I) x^2))^(-28683 I/2350) ((
       136627/40000 + (52209 x)/20000 + (12209 x^2)/20000)/(
       127791/40000 - (3 I Sqrt[33195382416002209])/200 + (52209 x)/
        20000 - (12209 I Sqrt[33195382416002209] x)/
        4000000 + ((-2209 - 200 I Sqrt[33195382416002209]) x)/20000 + (
        12209 x^2)/20000 - (
        12209 (2209 + 200 I Sqrt[33195382416002209]) x^2)/800000000))^(-((
       18051015024 I)/(575 Sqrt[33195382416002209])))
       Hypergeometric2F1[-((28683 I)/2350), -((18051015024 I)/(
        575 Sqrt[33195382416002209])), 
       1, (94 ((10000 (-94 + Sqrt[33195382416002209]) - 
               200 I (100 Sqrt[33195382416002209] + 
                  47 (-200 + Sqrt[33195382416002209])) x - (220900 - 
                  103823 I) x^2) (136627 + 104418 x + 
               24418 x^2) - ((300 - 
                 94 I) + (600 - 94 I) x + (200 - 
                  94 I) x^2) (80000 (-2209 I + 
                  150 Sqrt[33195382416002209]) + 
               200 (12209 Sqrt[33195382416002209] + 
                  200 (-2209 I + 200 Sqrt[33195382416002209])) x + 
               12209 (-2209 I + 
                  200 Sqrt[33195382416002209]) x^2)))/(((127791 - 
              28200 I) + (95582 - 56400 I) x + (15582 - 
               18800 I) x^2) (20000 (87791 - 
               400 I Sqrt[33195382416002209] + 
               200 (200 - I Sqrt[33195382416002209])) + 
            200 (12209 (200 - I Sqrt[33195382416002209]) + 
               200 (37791 - 200 I Sqrt[33195382416002209])) x + 
            12209 (37791 - 200 I Sqrt[33195382416002209]) x^2))]*)
POSTED BY: Mariusz Iwaniuk
Posted 1 month ago

Hello , Thank you very much for your help. Finally I managed to run the code. In order to solve the problem that there is a partial derivative with respect to beta and then with respect to Landau, and then the limit of the obtained derivative when Landau tends to zero, maybe you can help me. Because the numerical integral is taken, I have a problem in getting the derivative.

POSTED BY: Minaa Askari

POSTED BY: Mariusz Iwaniuk

The line

\[Alpha]T1 = 1*2.8683/0.235simplifiedA = Simplify[A];

does not make sense. Perhaps you meant

\[Alpha]T1 = 1*2.8683/0.235simplifiedA;

You cannot start a definition with

F[_\[Beta], \[Lambda]] = 

Perhaps you meant

F[\[Beta]_, \[Lambda]_] = 

I have tried plotting your function with numeric values for the parameters:

ReImPlot[Evaluate[integrandsimple /. {\[Lambda] -> 1, \[Beta] -> 1}],
 {x, 5.5, 5.55}]

and it appears to be wildly oscillating. Have you good reason to think that the function is integrable from 0 to infinity?

POSTED BY: Gianluca Gorni
Reply to this discussion
Community posts can be styled and formatted using the Markdown syntax.
Reply Preview
Attachments
Remove
or Discard

Group Abstract Group Abstract