I have gone a little further:
Clear[u, x, t, \[CapitalPhi]];
eq21 = D[u[x, t], t] + 5 D[u[x, t] D[u[x, t], {x, 2}], x] +
5 u[x, t]^2 D[u[x, t], x] + D[u[x, t], {x, 5}]
eq22 = u -> Function[{x, t}, 6 D[Log[\[CapitalPhi][x, t]], {x, 2}]]
subst = (eq21 /. eq22)/6;
eq23 = Integrate[subst, x] // Together // Numerator
(*2.4*)
dOperator[phi_, psi_, n_Integer, {x_, t_}] :=
Module[{x1, x2},
Nest[D[#, x1] - D[#, x2] &, phi[x1, t] psi[x2, t], n] /.
x1 | x2 -> x]
(*2.5*)dOperator[phi_, psi_, {n_Integer, m_Integer}, {x_, t_}] :=
Module[{dt, x1, x2, t1, t2},
dt = Nest[D[#, t1] - D[#, t2] &, phi[x1, t1] psi[x2, t2], m];
Nest[D[#, x1] - D[#, x2] &, dt, n] /. x1 | x2 -> x /. t1 | t2 -> t];
eq26 = dOperator[\[CapitalPhi], \[CapitalPhi], {1, 1}, {x, t}] +
dOperator[\[CapitalPhi], \[CapitalPhi], 6, {x, t}]
eq26 == 2 eq23 // Expand