Hello. I'm computing a Lie bracket commutation [Xi, Xj] = C_{i,j}^{k} X_{k} = - [Xi, Xj]
, i,j = 1, ... , 6 and i<j.
For example the following are some of the outputs:
For [X1,X5] =
For [X1,X6] =
For [X2,X5] = u (-((E^(-((t Sqrt[\[Kappa]] Sqrt[8 \[Theta] + 3 \[Kappa]])/(
2 Sqrt[3])) - (t Sqrt[\[Kappa] (8 \[Theta] + 3 \[Kappa])])/
Sqrt[3]) (-1 + E^((
2 t Sqrt[\[Kappa] (8 \[Theta] + 3 \[Kappa])])/Sqrt[
3])) (3 Sqrt[3] x Sqrt[\[Kappa]] +
2 Sqrt[3] \[Theta] Sqrt[\[Kappa]] -
3 x Sqrt[8 \[Theta] + 3 \[Kappa]]))/(16 x^(
3/2) \[Theta] Sqrt[\[Kappa]]
Sqrt[\[Kappa] (8 \[Theta] + 3 \[Kappa])])) +
1/(4 Sqrt[x] \[Theta] Sqrt[\[Kappa]])
E^((t Sqrt[\[Kappa]] Sqrt[8 \[Theta] + 3 \[Kappa]])/(
2 Sqrt[3])) (-3 x Sqrt[\[Kappa]] + 2 \[Theta] Sqrt[\[Kappa]] -
Sqrt[3] x Sqrt[8 \[Theta] + 3 \[Kappa]]) c$48559[2, 5, 1] +
1/(4 Sqrt[x] \[Theta] Sqrt[\[Kappa]])
E^(-((t Sqrt[\[Kappa]] Sqrt[8 \[Theta] + 3 \[Kappa]])/(
2 Sqrt[3]))) (-3 x Sqrt[\[Kappa]] + 2 \[Theta] Sqrt[\[Kappa]] +
Sqrt[3] x Sqrt[8 \[Theta] + 3 \[Kappa]]) c$48559[2, 5,
2]) + (-((
E^((t Sqrt[\[Kappa]] Sqrt[8 \[Theta] + 3 \[Kappa]])/(2 Sqrt[3]))
u)/(2 Sqrt[x])) + (
3 E^((t Sqrt[\[Kappa]] Sqrt[8 \[Theta] + 3 \[Kappa]])/(2 Sqrt[3]))
u Sqrt[x])/(4 \[Theta]) + (
Sqrt[3] E^((t Sqrt[\[Kappa]] Sqrt[8 \[Theta] + 3 \[Kappa]])/(
2 Sqrt[3])) u Sqrt[x] Sqrt[8 \[Theta] + 3 \[Kappa]])/(
4 \[Theta] Sqrt[\[Kappa]])) f$48559[
1] + (-((
E^(-((t Sqrt[\[Kappa]] Sqrt[8 \[Theta] + 3 \[Kappa]])/(
2 Sqrt[3]))) u)/(2 Sqrt[x])) + (
3 E^(-((t Sqrt[\[Kappa]] Sqrt[8 \[Theta] + 3 \[Kappa]])/(
2 Sqrt[3]))) u Sqrt[x])/(4 \[Theta]) -
1/(4 \[Theta] Sqrt[\[Kappa]])
Sqrt[3] E^(-((t Sqrt[\[Kappa]] Sqrt[8 \[Theta] + 3 \[Kappa]])/(
2 Sqrt[3]))) u Sqrt[x] Sqrt[8 \[Theta] + 3 \[Kappa]]) f$48559[
2]
For [X2,X6] = u (-((3 E^(-((t Sqrt[\[Kappa]] Sqrt[8 \[Theta] + 3 \[Kappa]])/(
2 Sqrt[3])) - (t Sqrt[\[Kappa] (8 \[Theta] + 3 \[Kappa])])/
Sqrt[3]) (-1 + E^((
t Sqrt[\[Kappa] (8 \[Theta] + 3 \[Kappa])])/Sqrt[
3]))^2 (3 x Sqrt[\[Kappa]] + 2 \[Theta] Sqrt[\[Kappa]] -
Sqrt[3] x Sqrt[8 \[Theta] + 3 \[Kappa]]))/(16 x^(
3/2) \[Theta] \[Kappa]^(3/2) (8 \[Theta] + 3 \[Kappa]))) +
1/(4 Sqrt[x] \[Theta] Sqrt[\[Kappa]])
E^((t Sqrt[\[Kappa]] Sqrt[8 \[Theta] + 3 \[Kappa]])/(
2 Sqrt[3])) (-3 x Sqrt[\[Kappa]] + 2 \[Theta] Sqrt[\[Kappa]] -
Sqrt[3] x Sqrt[8 \[Theta] + 3 \[Kappa]]) c$52039[2, 6, 1] +
1/(4 Sqrt[x] \[Theta] Sqrt[\[Kappa]])
E^(-((t Sqrt[\[Kappa]] Sqrt[8 \[Theta] + 3 \[Kappa]])/(
2 Sqrt[3]))) (-3 x Sqrt[\[Kappa]] + 2 \[Theta] Sqrt[\[Kappa]] +
Sqrt[3] x Sqrt[8 \[Theta] + 3 \[Kappa]]) c$52039[2, 6,
2]) + (-((
E^((t Sqrt[\[Kappa]] Sqrt[8 \[Theta] + 3 \[Kappa]])/(2 Sqrt[3]))
u)/(2 Sqrt[x])) + (
3 E^((t Sqrt[\[Kappa]] Sqrt[8 \[Theta] + 3 \[Kappa]])/(2 Sqrt[3]))
u Sqrt[x])/(4 \[Theta]) + (
Sqrt[3] E^((t Sqrt[\[Kappa]] Sqrt[8 \[Theta] + 3 \[Kappa]])/(
2 Sqrt[3])) u Sqrt[x] Sqrt[8 \[Theta] + 3 \[Kappa]])/(
4 \[Theta] Sqrt[\[Kappa]])) f$52039[
1] + (-((
E^(-((t Sqrt[\[Kappa]] Sqrt[8 \[Theta] + 3 \[Kappa]])/(
2 Sqrt[3]))) u)/(2 Sqrt[x])) + (
3 E^(-((t Sqrt[\[Kappa]] Sqrt[8 \[Theta] + 3 \[Kappa]])/(
2 Sqrt[3]))) u Sqrt[x])/(4 \[Theta]) - (
Sqrt[3] E^(-((t Sqrt[\[Kappa]] Sqrt[8 \[Theta] + 3 \[Kappa]])/(
2 Sqrt[3]))) u Sqrt[x] Sqrt[8 \[Theta] + 3 \[Kappa]])/(
4 \[Theta] Sqrt[\[Kappa]])) f$52039[2]
For [X5, X6] = -u ((3 E^(-((t Sqrt[\[Kappa] (8 \[Theta] + 3 \[Kappa])])/Sqrt[
3])) (-1 + E^((t Sqrt[\[Kappa] (8 \[Theta] + 3 \[Kappa])])/
Sqrt[3])) (8 Sqrt[3] \[Theta] +
8 Sqrt[3] E^((t Sqrt[\[Kappa] (8 \[Theta] + 3 \[Kappa])])/
Sqrt[3]) \[Theta] + 3 Sqrt[3] \[Kappa] +
3 Sqrt[3] E^((t Sqrt[\[Kappa] (8 \[Theta] + 3 \[Kappa])])/
Sqrt[3]) \[Kappa] -
3 Sqrt[\[Kappa] (8 \[Theta] + 3 \[Kappa])] +
3 E^((t Sqrt[\[Kappa] (8 \[Theta] + 3 \[Kappa])])/Sqrt[3])
Sqrt[\[Kappa] (8 \[Theta] +
3 \[Kappa])]))/(8 \[Theta] \[Kappa] (8 \[Theta] +
3 \[Kappa]) Sqrt[\[Kappa] (8 \[Theta] + 3 \[Kappa])]) +
1/(4 Sqrt[x] \[Theta] Sqrt[\[Kappa]])
E^((t Sqrt[\[Kappa]] Sqrt[8 \[Theta] + 3 \[Kappa]])/(
2 Sqrt[3])) (-3 x Sqrt[\[Kappa]] + 2 \[Theta] Sqrt[\[Kappa]] -
Sqrt[3] x Sqrt[8 \[Theta] + 3 \[Kappa]]) c$54648[5, 6, 1] +
1/(4 Sqrt[x] \[Theta] Sqrt[\[Kappa]])
E^(-((t Sqrt[\[Kappa]] Sqrt[8 \[Theta] + 3 \[Kappa]])/(
2 Sqrt[3]))) (-3 x Sqrt[\[Kappa]] + 2 \[Theta] Sqrt[\[Kappa]] +
Sqrt[3] x Sqrt[8 \[Theta] + 3 \[Kappa]]) c$54648[5, 6,
2]) - (-((
E^((t Sqrt[\[Kappa]] Sqrt[8 \[Theta] + 3 \[Kappa]])/(2 Sqrt[3]))
u)/(2 Sqrt[x])) + (
3 E^((t Sqrt[\[Kappa]] Sqrt[8 \[Theta] + 3 \[Kappa]])/(2 Sqrt[3]))
u Sqrt[x])/(4 \[Theta]) + (
Sqrt[3] E^((t Sqrt[\[Kappa]] Sqrt[8 \[Theta] + 3 \[Kappa]])/(
2 Sqrt[3])) u Sqrt[x] Sqrt[8 \[Theta] + 3 \[Kappa]])/(
4 \[Theta] Sqrt[\[Kappa]])) f$54648[
1] - (-((
E^(-((t Sqrt[\[Kappa]] Sqrt[8 \[Theta] + 3 \[Kappa]])/(
2 Sqrt[3]))) u)/(2 Sqrt[x])) + (
3 E^(-((t Sqrt[\[Kappa]] Sqrt[8 \[Theta] + 3 \[Kappa]])/(
2 Sqrt[3]))) u Sqrt[x])/(4 \[Theta]) - (
Sqrt[3] E^(-((t Sqrt[\[Kappa]] Sqrt[8 \[Theta] + 3 \[Kappa]])/(
2 Sqrt[3]))) u Sqrt[x] Sqrt[8 \[Theta] + 3 \[Kappa]])/(
4 \[Theta] Sqrt[\[Kappa]])) f$54648[2]
Why am I getting them as part of the outputs. I want to see numbers or mathematical expressions. I humbly request your assistance. Please help.