Message Boards Message Boards

0
|
23 Views
|
0 Replies
|
0 Total Likes
View groups...
Share
Share this post:
GROUPS:

Solving a 4th-Order PDE Numerically?

Posted 5 hours ago

I try to solve numerically phi(x,t) to get the same fig [![enter image description here][1]][1]. Actually, this figure obtained employing pathlength continuation techniques as bundled in auto07p (or more modern pde2path) by Matlab

So any help to NDSolve by Mathematica? The linear ansatz. Which numerical methods are you employing?: shooting? pseudo-arclength continuation?

(\[PartialD]f (x,t) )/\[PartialD]t= a(\[PartialD]^2f (x,t) )/\[PartialD]x^2 [(b^4+r)f(x,t) + (f (x,t))^3+2b^2(\[PartialD]^2f (x,t) )/\[PartialD]x^2+(\[PartialD]^4f (x,t) )/\[PartialD]x^4],
     Boundary Conditions: f(-100,t)=0 and f(100,t)=0.
     the ansatz: f(x,t)= c+ d exp(\[Beta] t+i \[Pi]/50 x).
    a=b=1, -1<r<1, -0.8<c<-0.2, d=0.5 and \[Beta]= 3.7*10^-5.

 b = 1; L = 100; a0 = -0.3; b0 = 0.5; q = 1; r = -0.9;

\[Phi]0[x_] := a0 + b0 Cos[2 \[Pi] x/L];

\[Phi]1[x_, t_] := (r + q^4) \[Phi][x, t] + \[Phi][x, t]^3; \[Phi]2[ x_, t_] := D[\[Phi][x, t], {x, 4}] + 2 q^2 D[\[Phi][x, t], {x, 2}]; \[Phi]12[x_, t_] := \[Phi]1[x, t] + \[Phi]2[x, t];

SHE[x_, t_] := D[\[Phi][x, t], t] == b D[\[Phi]12[x, t], {x, 2}];

sol = NDSolve[{SHE[x, 
t], \[Phi][x, 0] == \[Phi]0[x], \[Phi][-100, t] == 
0, \[Phi][100, t] == 0 }, \[Phi], {x, -100, 100}, {t, 0, 2}]; 
P[x_, t_] := \[Phi][x, t] /. sol;
densityPlot = Plot3D[Evaluate[P[x, t]], {x, -100, 100}, {t, 0, 5}, AxesLabel -> {"x", "t", "\[Phi](x,t)"}]
Attachment

Attachments:
POSTED BY: M.A.A Ahmed
Reply to this discussion
Community posts can be styled and formatted using the Markdown syntax.
Reply Preview
Attachments
Remove
or Discard

Group Abstract Group Abstract