Let us try a workaround. The primitive given by Mathematica is discontinuous:
f[x_] = Integrate[ArcTan[x]/(x^2 - x + 1), x]
Plot[f[x], {x, 0, Infinity}]
This is where the discontinuity occurs:
FunctionDiscontinuities[f[x], x, Complexes];
FullSimplify[%, Element[x, Reals]]
The full integral can be calculated this way:
disc = 2 + Sqrt[3];
f0 = f[0];
fdisc0 = Limit[f[x], x -> disc, Direction -> "FromBelow"];
fdisc1 = Limit[f[x], x -> disc, Direction -> "FromAbove"];
finfinity = Limit[f[x], x -> Infinity];
finfinity - fdisc1 + fdisc0 - f0 // FullSimplify
% // N