UnitaryMasterEquation :=
Dt[S * C] ==
kappaDN * Integrate[Exp[phi] * G4 \[Wedge] HodgeDual[G4], X] +
(3 * kappaDN^6 * Lambda^2) /
((2*Pi)^7 * PlanckLength^2 * (r^2 + a^2)^4) +
MRBConstant * TopologicalF[Sqrt[25/Pi^2] + MRBConstant/7] +
(8 * Pi * GravitationalConstant * VacuumRho) /
(SpeedOfLight^4 * 3.3125` * 10^-122) +
(1729 + 4096)^(1/18)
FluxIntegral := Integrate[Exp[phi] * G4 \[Wedge] HodgeStar[G4], X]
KerrGeometry := (r^2 + a^2)
Needs["PhysicalConstants`"];
{kappaDN, PlanckLength, GravitationalConstant, SpeedOfLight} =
{1, NISTValue["Planck length"], NISTValue["Gravitational constant"],
NISTValue["Speed of light"]};
(* When flux term -> 0 *)
N[MRBConstant * (5/Pi + MRBConstant/7) + (1.04/3.3125) + (1729+4096)^(1/18), 30]
(* Output: 2.23675417393035178711474380400 *)
"integral e^phi G4 wedge *G4 over X + (3 kappa^6 Lambda^2)/((2pi)^7 l_p^2 (r^2+a^2)^4) + MRBConstant (sqrt(25/pi^2)+MRB/7) + (1.04e-122)/(3.3125e-122) + (1729+4096)^(1/18)"
\begin{align*}
\frac{d}{dt}(S \cdot C) &= \kappa_{DN} \int_X e^\phi G_4 \wedge \ast G_4 + \frac{3\kappa_{DN}^6 \Lambda^2}{(2\pi)^7 \ell_p^2 (r^2 + a^2)^4} \\
&\quad + C_{\text{MRB}} \cdot \mathcal{F}_{\text{top}}\!\left(\sqrt{\frac{25}{\pi^2}} + \frac{C_{\text{MRB}}}{7}\right) + \frac{8\pi G \rho_{\text{vac}}}{c^4 \cdot 3.3125 \times 10^{-122}} + (1729 + 4096)^{1/18}
\end{align*}
(* Load constants *)
Needs["PhysicalConstants`"];
kappaDN = 1;
planckL = NISTValue["Planck length"];
vacRho = 1.04 * 10^-122;
(* Define terms *)
topoTerm = MRBConstant * (Sqrt[25/Pi^2] + MRBConstant/7);
cosmoTerm = vacRho / (3.3125 * 10^-122);
goldenTerm = (1729 + 4096)^(1/18);
(* Numerical output *)
result = topoTerm + cosmoTerm + goldenTerm;
Print["Master Equation Output: ", N[result, 30]];
Print["Comparison to Sqrt[5]: ", N[Sqrt[5], 30]];
Master Equation Output: 2.23675417393035178711474380400
Comparison to Sqrt[5]: 2.23606797749978969640917366873
(((((3*((2sqrt2)/Pi)^6*(1.040*10^-122)^2))/((((2Pi)^7*(1.616255*10^-35)^2))))) + MRB const * (sqrt(25/(Pi^2))+1/7*MRB const) + (1.040*10^-122)/(3.3125*10^-122) + (1729+4096)^(1/18))
Input interpretation
(3 ((2 sqrt(2))/π)^6 (1.04/10^122)^2)/((2 π)^7 (1.616255×10^(-35))^2) + C_MRB (sqrt(25/π^2) + 1/7 C_MRB) + (1.04/10^122)/(3.3125/10^122) + (1729 + 4096)^(1/18)
Result
2.23675... about √5
Further:
Input interpretation
((3 ((2 sqrt(2))/π)^6 (1.04/10^122)^2)/((2 π)^7 (1.616255×10^(-35))^2) + C_MRB (sqrt(25/π^2) + 1/7 C_MRB) + (1.04/10^122)/(3.3125/10^122) + (1729 + 4096)^(1/18)) - 1/ϕ
Result
1.61872018518045693891015696963435387311452380230307633987598097343880035...