how to add conditions for ellipse and hyperbolas to this app?
q = {Off[NMinimize::eit]; Off[NMinimize::lstol];
DynamicModule[{rng, ptk, szumx, szumy, final},
Panel[Column[{"Theta z przedzia?u od 0 do:",
RadioButtonBar[
Dynamic[rng], {2 Pi -> "2[Pi]", Pi -> "[Pi]",
Pi/2 -> "[Pi]/2", Pi/8 -> "[Pi]/8"}], ,
"Ilo?? generowanych punktów:",
RadioButtonBar[
Dynamic[ptk], {5 -> "5", 20 -> "20", 50 -> "50",
100 -> "100"}], , "Warto?ci wektora przesuni?cia",
"Warto?? xi:" RadioButtonBar[
Dynamic[szumx], {-0.1 -> "-0.1", -.5 -> "-0.5", -.9 ->
"-0.9", -3 -> "-3"}],
"Warto?? yj:" RadioButtonBar[
Dynamic[szumy], {0.1 -> "0.1", .5 -> "0.5", .9 -> "0.9",
3 -> "3"}],
Button["Generuj Elipse",
While[True,(*losowo wybra? akceptowalne wspó?czynniki*){a, b,
c, d, f, g} = RandomReal[{-10, 10}, 6];
[CapitalDelta] = -c d^2 + 2 b d f - a f^2 - b^2 g + a c g;
j = -b^2 + a c; i = a + c;
If[[CapitalDelta] != 0 && j > 0 && [CapitalDelta]/i < 0,
Break[]]];
ellipse = a*x^2 + 2*b*x*y + c*y^2 + 2*d*x + 2*f*y + g;
(*?rodek elipsy w ogólnej formie {(c d-b f)/(b^2-a c),(a f-
b d)/(b^2-a c)}*)points = Table[theta = RandomReal[{0, rng}];
ksol = FindRoot[(ellipse /. {x ->
k*Cos[theta] + (c d - b f)/(b^2 - a c),
y -> k*Sin[theta] + (a f - b d)/(b^2 - a c)}) ==
0, {k, 1.}];
Point[{x, y}] /. {x ->
k*Cos[theta] + (c d - b f)/(b^2 - a c),
y -> k*Sin[theta] + (a f - b d)/(b^2 - a c)} /.
ksol, {ptk}];
nearpoints =
points /.
Point[{x_, y_}] :>
Point[{x + RandomReal[{szumx, szumy}],
y + RandomReal[{szumx, szumy}]}];
(*minimalne i maksymalne warto?ci x i y dla elipsy*)
yplotrange =
Flatten[{y,
Sort[{(2*b*d - 2*a*f +
Sqrt[(2*b*d - 2*a*f)^2 -
4*(b^2 - a*c)*(d^2 - a*g)])/(2*(-b^2 + a*c)), (-2*b*
d + 2*a*f +
Sqrt[(2*b*d - 2*a*f)^2 -
4*(b^2 - a*c)*(d^2 - a*g)])/(2*(b^2 - a*c))}]}];
xplotrange =
Flatten[{x,
Sort[{(2*c*d - 2*b*f +
Sqrt[(-2*c*d + 2*b*f)^2 -
4*(b^2 - a*c)*(f^2 - c*g)])/(2*(b^2 - a*c)), (-2*c*
d + 2*b*f +
Sqrt[(-2*c*d + 2*b*f)^2 -
4*(b^2 - a*c)*(f^2 - c*g)])/(2*(-b^2 + a*c))}]}];
(*zminimalizowa? dystans pobliskich punktów dla nowej ogólnej \n elpisy*)nearCoords = nearpoints[[All, 1]];
{xs, ys} = Transpose[nearCoords];
newellipse = aa*x^2 + 2*bb*x*y + cc*y^2 + 2*dd*x + 2*ff*y + gg;
distance = Plus @@ (newellipse^2 /. {x -> xs, y -> ys});
{res, coes} = NMinimize[distance, {aa, bb, cc, dd, ff, gg}];
scaleup =
FromDigits[{{1}, Last@RealDigits[1/(gg /. coes)] + 1}];
esolve = Expand[scaleup*(newellipse /. coes)];
final =
Show[ContourPlot[{ellipse == 0, esolve == 0},
Evaluate[xplotrange], Evaluate[yplotrange]],
Graphics[points], Graphics[{Red, nearpoints}],
ImageSize -> {500, Automatic}];], Dynamic@final
(*,Dynamic@Grid[Join[{{"points","nearby points"}},
Transpose[{points,nearpoints}][[All,All,1]]],Frame->All,
Alignment->Left]*)}]]]};
Grid[{{Labeled["(A)", q], Labeled["(B)", q]}, {Labeled["(C)", q],
Labeled["(D)", q]}}]