You can't rely on W|A treating input like Mathematica does. Just what it does is a mystery to me, and I wouldn't trust it to check a high-precision algorithm.
For instance, the W|A query
mod((5.319372648326541416707296656673541083813×Power[10,255]), floor(2π,1e-1100))
yields the same 1101 digits as the following code does in Mathematica (ditto for the 301 digits using the exponent -300):
RealDigits[
Mod[FromDigits@RealDigits[
5.319372648326541416707296656673541083813*Power[10, 255]],
Floor[2 \[Pi], 1*^-1100]]] // N[FromDigits[#], Length@First@#] &
While 5.319372648326541416707296656673541083813×Power[10,255] is a floating-point number in WL and the following code fails in Mathematica, W|A treats the input differently:
Mod[
5.319372648326541416707296656673541083813*Power[10, 255],
Floor[2 \[Pi], 1*^-1100]] // InputForm
(* 0``-216. *)