Message Boards Message Boards

Try to beat these MRB constant records!

POSTED BY: Marvin Ray Burns.

Index

The first post

§1. The preface and this Index.


Second post.

§2 Analyze the CTRL+f."prototypical series" for the MRB constant, Sn^(1/n)-1 and find its "completion" (a related series that is absolutely convergent).

(Select § with the given number or the keywords in quotes, and then press the

CTRL+f keys on your keyboard to move to that section.)

§3. Is that series convergent?

§4. Is -1 the only term that series is convergent for?

§5. Is that series absolutely convergent?

§6. Is that series "efficient?" (defined as how it compares to other series and integrals that compute CMRB in speed and computational cost.)

§7. My claim to the MRB constant (CMRB), or a case of calculus déjà vu?

§8. Where is it found?

§9. What exactly is it?

§B CTRL+f "Rational results" while summing (CMRB). <- reinvestigating this, will repost when concluded

Many more informative posts.

including, but not limited to

§10. How it all began <- I deleted this reply as it is not perinate to the MRB constant, just to a person becoming an amateur researcher but will summarize it in another reply if anyone would like.

Also see

MOPAC

for where the MRB constant's value, to a precision of 2 one-billionth i.e., 0.18785964, is arrived at by measuring a gradient of the silicon atom in the Phenakite (Be2SiO4) molecule by openmopac.

§13. The why and what of the CMRB Records,


CTRL+f "We finally begin or 7-million-digit computation and verification."


CTRL+f "speed records"


CTRL+f "Programs and formulas to compute the integrated analog of the MRB constant"


CTRL+f "I calculated 6,500,000 digits of the MRB constant!!"


CTRL+f "the methods used to compute CMRB and their efficiency"


CTRL+f "Beyond any shadow of a doubt, I verified 5,609,880 digits of the MRB constant"


CTRL+f "Distribution of digits"


CTRL+f ".including arbitrarily close approximation formulas"


CTRL+f "calculation of the MRB constant using the integral"


CTRL+f "about computing the MRB constant from Crandall's eta derivative formulas"


But wait, there's more!

If you see this instead of an image, reload the page.




The MRB constant is a fascinating mathematical object that is still under investigation. It is possible that further research will reveal even more interesting properties about the constant, and perhaps other parts of mathematics. For an example, a recent advancement in MRB constant formulas connecting the Dirichlet eta to nth roots shown below, yields a proof of the previously proposed concept that the MRB constant connects such ideas together. Another is where Richard Crandall and I, independently found novel and "light-speed" algorithms for computing n^(1/n) many times faster than Mathematica's default Power[] operation. Those very fast algorithms are found in the code we show for computing record (in number and speeds) digits.





As published at

https://mathworld.wolfram.com/MRBConstant.html,

enter image description here

created by an amateur, serves as a potential catalyst for the field of mathematics by generating new questions, prompting re-evaluation of existing concepts, and encouraging broader participation in research -- is a testament to the power of curiosity, collaboration, and the relentless pursuit of knowledge.

Catalyst

The MRB constant is more than just a number to chase records with. It's a gateway to a world of intellectual exploration, collaboration, and potential breakthroughs!



POSTED BY: Marvin Ray Burns.

M burns 1970s

It's March 7, 1978. I'm about to graduate from high school and the Marine Corps recruiter thumps on my door. He wants to talk about life after graduation. I begin to think: "my grades aren't very great, there's no way to afford college; furthermore, school is hell!" He tells me adventure and glory are just one signature away and that I would make an excellent Marine! He tells me it will be the hardest, yet most rewarding career I could possibly experience. In short, he walks away with my John Henry. I served my time and then began a long second career in the construction trades. But something kept gnawing my guts out! Ever since a childhood dream that spooked me after hearing a preacher talking about, everyone has a time appointed to die, "God has your number." In my dream, God literally, showed me a number written on a child's writing board and told me it was mine -- (Could that have been a premonition of the MRB constant?) -- I always had an undeniable craving in me to leave a legacy that would help people in the future know I was here. I swore that if I didn't, my whole life would have been a total waste!

M burns 90s

Discovery of the MRB Constant

My journey to discovering the MRB constant began with a deep fascination for mathematical series and their properties. This fascination was first ignited in the seventh grade at Forest Manor Junior High, where my favorite teacher, Miss Global, used an individually paced program to teach math. With very little effort, I was doing algebra by the end of the year, and math remained my strong suit throughout high school.

It's March 7, 1994: Welcome to my cave, a damp, dark, and dreary apartment where the dim light of an old television set continuously petitions my undivided interest. Yes, it, my dearest confidant, is always present to greet me after work. My only more zealous companion is total exhaustion from another ten-hour day of siding houses. Consequently, incapable of resisting its hypnotic power, I collapse into my recliner. The age-softened, albeit somewhat torn leather sensuously swaths my aching shoulders, once-broken back, and bruised neck. Hence, I assume a nearly horizontal position, leveraging my feet to just the optimum height for both snoozing and watching.

My mind assures my heart; my job is through for this twenty-four-hour life rotation, further assuming at best it is time to reflect on how much money I have earned, or at worst to envision all those things that I should have achieved in life. As a Roman Slave Master would have chained a galley slave to his oar, the absence of invention and poverty of purpose shackles my hand to the remote control. Here I lie, spellbound. Sounds and images cycle before me. Faster and faster, my forefinger makes love to the channel selector. The stations run their course at an exponentially increasing rate. As a condemned prisoner awaits the throw of the death switch, my mind entreats, haste the time when sleep silences reason. Then, as sudden as a coronary, my aching heart replies, Is this all that there is to life, one miserable TV show after another, bed, work, one miserable TV show? Of what benefit is it even to be alive? Of what good, to the world, is this mind? The deceased care not. They have no abated hope. The dead grieve not. They need no destiny.

No more! Frantically wails my dying heart, Mind, no more will you be useless and unproductive flesh; but creative spirit, have I made thee.

After this pivotal moment, I decided to change my life. I turned off the television and began writing out the powers of two. This seemingly simple act sparked a two-year journey of buying blank paper, squeezing the led out of pencils, and wearing out my vision making math tables. My imagination ran wild, and I felt as though I was altering my future and that of many others for the better.

Through extensive experimentation and analysis, I was able to define the MRB constant as the upper limit point of the sequence of partial sums of the series: $$ S_n = \sum_{k=1}^{n} (-1)^k k^{1/k} $$ As ( n ) grows to infinity, the sums have upper and lower limit points of approximately 0.187859 and -0.812140, respectively, separated by an interval of length 1. This constant, which I initially called the "root constant" (rc), was later renamed the MRB constant at the suggestion of Simon Plouffe.

The MRB constant is significant not only because it represents a new mathematical constant but also because it highlights the beauty and complexity of alternating series. While the constant does not yet have a known closed-form expression, its discovery has opened new avenues for research in number theory and mathematical analysis.

The discovery of the MRB constant is a reminder of the importance of curiosity and persistence in mathematical research. By exploring the behavior of series and seeking out new patterns, we can uncover constants and properties that deepen our understanding of mathematics. My journey from a struggling individual to a discoverer of a mathematical constant is a testament to the transformative power of curiosity and dedication. It is a testament to the power of curiosity and experimentation in mathematics.

Now, March 7,2024, you now know me for the never-ending decimal that haunts your calculators – the MRB constant. If you see this text, the images are not showing. Refresh the page. The first 100 partial sums of {the CMRB series.}

Original discoveries cannot arise from even the best curricula! Rather, from independent hands-on experimentation and observation (only after thought through and evaluated by the student, verified by experts). There's a place in education for pupils to freely investigate and, frankly, make up new discoveries with the best of their judgement, following the examples of Newton with the laws of motion and Kepler (planetary motion), while they are still capable of exercising their untempered imagination

Don't worry, despite my new-found research collaborators, i.e., "pupils," I won't hold it against you if you haven't memorized my discovery's first million digits (yet!). However, in this forum, we're embarking on a wild ride as we work our way to the seemingly impossible calculation of the MRB constant's decimal expansion to "7,000,000 proven to be accurate digits! (A triumph 30 years in the making!)

Yes, I am just an ordinary person like you but was resourceful enough to summon my imagination to make a fascinating discovery worth sharing with the world! or at least the million+ readers of this discussion and the 1,834,506+ who have seen the MRB constant Wikipedia article. It brings me to my knees that, there are many experts in the field of series and sequences who have devoted their lives to studying, all the diamondiferous facets of those fields, I, who was ignorant even of that fact then, can't bald-facedly claim to have found a numeric Big Bang or apocalypse (just another guidepost for the inquiring). Notwithstanding, I too am curious, always wondering, including all about the MRB constant, a remarkable number that appears in many series. So, please join in this exploration of discovery, of all findings and thoughts on it. Above all, I would greatly appreciate your feedback and insights, always eager to learn more and even maximize my understanding. Further, I am grateful for the contributions of many, as well as every version of Mathematica from 5 to present. All have helped every baby step the way, providing data, code, proofs and suggestions. Without them, this discussion would not be possible.

As the (author, if you will) of this enigmatic constant as of 1999, after years of delving into its mysteries, I'm still captivated by its fascinating properties and untapped potential. Join me, seasoned mathematicians, and curious minds alike, as we push the boundaries of understanding and unlock the secrets of the MRB constant. Buckle up!




Beyond the Record: What People Can Gain from MRB Constant Computations

.

As I said, the MRB constant is more than just a number to chase records with. It's a gateway to a world of intellectual exploration, collaboration, and potential breakthroughs. By venturing beyond the norm, I have set records to be broken. By venturing beyond the records, people can gain valuable skills, knowledge, and a deeper appreciation for the power of scientific inquiry.



=================================================


For the best viewing, wait a minute until the word LaTeX in the LaTex script is centered below.

$$\LaTeX$$

If the phrase [Math Processing Error] is shown, or the LATEX script have vanished from the center of the above line, some of the math below might be missing or appear in the LaTex code instead of the script.

For easy navigation, use the CTRL+f keys on your keyboard. Cues in the forms of §'s and keywords in quotes are provided in the "Index".



If the header and the words

Reply | Flag

are shown at the same time in any of the following replies, refresh the page to see them.


§2 The MRB constant relates to the divergent series

DNE

The divergent sequence of its partial sums has two accumulation points with an upper limiting value or limsup known as the MRB constant (CMRB), and a liminf of CMRB-1:

plot sup and inf

So, out of the many series for CMRB, first analyze the sum prototype or prototypical series, i.e., the conditionally convergent summation, the sum of two divergent ones:

two series


Because the Riemann series theorem states that, by a suitable rearrangement of terms, a conditionally convergent series may be made to converge to any desired value, or to diverge, we will quickly derive an absolutely convergent one. (In a sense it is the "completion" of the prototypical series.) To find its completion, perform the process, add the terms of another conditionally convergent series then subtract their sum. WHY? and HOW does that produce the absolutely convergent series? thm

How does this leverage the exponential convergence rate of the DirichletEta[] function?

Great question! Let's break it down:

Convergence of $\left( n^{1/n} \right)$

The sequence $\left( n^{1/n}\right)$ converges to 1 as $\left( n \right)$ approaches infinity. This can be shown using logarithms and L'Hôpital's rule. Specifically:

(1.) Take the natural logarithm of $\left( n^{1/n} \right)$: $$ \ln(n^{1/n}) = \frac{\ln(n)}{n} $$

(2.) As $(n )$ approaches infinity, $( \frac{\ln(n)}{n} )$ approaches 0. This can be shown using L'Hôpital's rule:

$$ \lim_{n \to \infty} \frac{\ln(n)}{n} = \lim_{n \to \infty} \frac{1/n}{1} = 0 $$

(3.) Therefore, $\left( \ln(n^{1/n}) \right)$ approaches 0, which implies: $$ \lim_{n \to \infty} n^{1/n} = e^0 = 1 $$

Convergence of Dirichlet Eta Function Derivatives

The Dirichlet Eta function, $\left( \eta(s) \right)$, is defined as: $$ \eta(s) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^s} $$

The convergence of the derivatives of the Dirichlet Eta function can be understood through its series representation and the properties of alternating series:

(1.) Alternating Series: The Dirichlet Eta function is an alternating series, which converges more rapidly due to the alternating signs of its terms.

(2.) Derivative Behavior: The partial derivatives of the Dirichlet Eta function involve terms of the form $\left( \frac{(-1)^{n-1} \ln(n)}{n^s} \right)$. These terms decrease more rapidly compared to ( n^{1/n} ) because the logarithmic term $\left( \ln(n) \right)$ grows slower than any polynomial term, and the $\left( n^s \right)$ term in the denominator ensures faster decay.

(3. )Faster Convergence: The combination of the alternating series and the logarithmic decay in the derivatives of the Dirichlet Eta function results in faster convergence compared to the sequence $\left( n^{1/n} \right)$.

In summary, the derivatives of the Dirichlet Eta function converge faster than $( n^{1/n} )$ due to the alternating nature of the series and the presence of logarithmic terms that decay more rapidly.

1

relates the derivative of the Dirichlet eta function to an infinite sum involving logarithms. Let's break down how to prove this relationship.

Understanding the Equation

  • Left Side: Represents an infinite sum.
    • (-1)^n: Alternates the sign of each term in the sum (positive for odd n, negative for even n).
    • log(n): Natural logarithm of n.
    • n^x: n raised to the power of x.
  • Right Side: Represents a limit involving the derivative of the Dirichlet eta function.
    • η(n): Dirichlet eta function.
    • ∂η(n)/∂n: Derivative of the eta function with respect to n.
    • lim (n->x): Limit as n approaches x.

Proving the Relationship

The proof of this identity involves complex analysis and the theory of Dirichlet series. Here's a general outline of the key steps involved:

(1.) Dirichlet Eta Function: * Define the Dirichlet eta function: η(s) = Σ [(-1)^(n-1)] / n^s where the sum is taken over all positive integers n, and s is a complex number with real part greater than 0.

(2.) Relationship to Riemann Zeta Function: * Establish the connection between the eta function and the Riemann zeta function: η(s) = (1 - 2^(1-s)) ζ(s)

(3.) Derivative of Eta Function: * Differentiate the eta function with respect to s: η'(s) = Σ [(-1)^n log(n)] / n^s

(4.) Limit and Substitution: * Take the limit as s approaches x: lim (s->x) η'(s) = lim (s->x) Σ [(-1)^n log(n)] / n^s

(5.) Conclusion * Recognize that the left side of the original equation is equivalent to the limit of the derivative of the eta function as s approaches x. * Thus proving the original identity

Important Notes

  • This is a simplified outline. A rigorous proof would involve careful consideration of convergence, analytic continuation, and the properties of Dirichlet series.
  • The identity holds for values of x where the Dirichlet eta function and its derivative are defined and analytic.

Key Concepts

  • Dirichlet Series
  • Riemann Zeta Function
  • Analytic Continuation
  • Complex Analysis

Mathematica gives a numeric proof:

In[47]:= Sum[(-1)^n Log[n]/n^x, {n, 1, Infinity}]

Out[47]= 2^-x (2 Log[2] Zeta[x] - 2 Derivative[1][Zeta][x] + 
2^x Derivative[1][Zeta][x])

In[48]:= Limit[D[DirichletEta[n], n], n -> x]

Out[48]= 
2^(1 - x) Log[2] Zeta[x] + (1 - 2^(1 - x)) Derivative[1][Zeta][x]

In[46]:= FullSimplify[
Sum[(-1)^n Log[n]/n^x, {n, 1, Infinity}] == 
Limit[D[DirichletEta[n], n], n -> x]]

Out[46]= True

That process gives the absolutely and speedily convergent sum:

first

= enter image description here

By

1

and

Fubini's theorem for infinite series,

=

$$\sum_{n \ge 1} \sum_{m \ge 2} (-1)^n \frac{(\log n)^m}{n^m m!} = \sum_{m \ge 2} \sum_{n \ge 1} (-1)^n \frac{(\log n)^m}{n^m m!} = \sum_{m \ge 2} (-1)^{m+1} \frac{\eta^{(m)}(m)}{m!}$$

Remark: We can use Fubini's theorem because, enter image description here


In order to maximize the amount of this discussion loaded, I broke this main post into two parts. If the next part doesn't say it's the second part of the main post, reload to see it.






POSTED BY: Marvin Ray Burns
32 Replies

This is the second half of the main post.

§2

Central Claim:

The MRB constant (C) can be expressed as:

$$ C = \sum_{n=2}^{\infty} (-1)^n (n^{1/n} - 1)$$

$$ = -\sum_{m=1}^{\infty} \frac{(-1)^m}{m!} \eta^{(m)}(m)$$

where $(\eta(s)) $is the Dirichlet eta function and $(\eta^{(m)}(m)) $ represents its $m^{th}$ derivative evaluated at $(s=m)$.

Proof Strategy:

Manipulatie an infinite series representation of the MRB constant. The core idea is:

  1. Series Representation of MRB Constant: Start with a known series representation of the MRB constant.
  2. Taylor Series Expansion: Expand a key term within the series using a Taylor series.
  3. Rearrangement and Cancellation: Rearrange the resulting terms and observe that certain terms cancel out.
  4. Relationship with Eta Function: Recognize that the remaining terms can be expressed in terms of the Dirichlet eta function and its derivatives.

Formal Proof:

(1.) Series Representation: We begin with the following representation of the MRB constant (C):

$$C = \sum_{n=2}^{\infty} (-1)^n (n^{1/n} - 1)$$

(2.) Taylor Series Expansion: The term (n^{1/n}) can be expressed using the Taylor series for (e^x):

$$n^{1/n} = e^{\frac{\log n}{n}} = 1 + \frac{\log n}{n} + \frac{\log^2 n}{2! n^2} + \frac{\log^3 n}{3! n^3} + \dotsb $$

(3.) Substitute and Rearrange: Substitute this expansion into the MRB series and rearrange:

$ \begin{align*} C &= \sum_{n=2}^{\infty} (-1)^n \left( \frac{\log n}{n} + \frac{\log^2 n}{2! n^2} + \frac{\log^3 n}{3! n^3} + \dotsb \right) \\ &= \sum_{m=1}^{\infty} \frac{1}{m!} \sum_{n=2}^{\infty} (-1)^n \frac{\log^m n}{n^m} \end{align*}$

(4.) Dirichlet Eta Function: Recognize the inner sum as the Dirichlet eta function and its derivatives:

$$\eta^{(m)}(s) = \frac{d^m}{ds^m} \left( \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^s} \right) = (-1)^{m+1} \sum_{n=1}^{\infty} (-1)^n \frac{\log^m n}{n^s}$$

Therefore,

$$C = -\sum_{m=1}^{\infty} \frac{(-1)^m}{m!} \eta^{(m)}(m)$$

This completes the proof.

Important Note: The manipulations in this proof are valid due to the absolute convergence of the series involved. This transformation leads to a "well-behaved, absolutely convergent series" which is important for the numerical computation of the MRB constant.

Here is how the speedily convergent sum (in midnight blue (Look closely!)) compares with the prototype (in yellow) to the precise value of the MRB constant (CMRB) (in red).



Concerning the sum prototype for CMRB

§3. Is the series convergent?

Proof of its convergence by Leibniz's criterion is shown next.

PROOF

We will prove the convergence of this series using the Alternating Series Test.

Alternating Series Test

An alternating series of the form
∑ (-1)^n * bn where bn > 0 for all n, converges if the following two conditions are met:

  1. Decreasing: The sequence bn is decreasing.
  2. Limit Zero: lim (n -> ∞) b_n = 0

Applying the Test

Let's analyze our series:

∑ (-1)^n * (n^(1/n) - 1)

  1. Decreasing:

We need to show that the sequence b_n = n^(1/n) - 1 is decreasing.

  • Consider the function f(x) = x^(1/x) - 1.
  • Take the derivative: f'(x) = x^(1/x) * (1 - ln(x)) / x^2.
  • For x > e, f'(x) is negative, meaning f(x) (and thus b_n) is decreasing.

2 Limit Zero:

We need to show lim (n -> ∞) (n^(1/n) - 1) = 0.

  • Recall that lim (n -> ∞) n^(1/n) = 1 (this can be proven using L'Hopital's rule or other methods).
  • Therefore, lim (n -> ∞) (n^(1/n) - 1) = 1 - 1 = 0.

Conclusion

Since both conditions of the Alternating Series Test are satisfied, we conclude that the series:

∑ (-1)^n * (n^(1/n) - 1)

is convergent.

Important Note: The Alternating Series Test only tells us the series converges. It doesn't tell us the value it converges to.


§4 Next, ask and observe,

Theorem: The series

$\sum_{n=1}^{\infty} (-1)^n (-z_0 + n^{1/n}) $

converges if and only if (z_0 = 1).

Proof:

(Necessity - If the series converges, then (z_0 = 1)):

  1. Divergence Test: Recall the Divergence Test from calculus: If the series (\sum an) converges, then (\lim{n\to\infty} a_n = 0).
  2. Apply to Our Series: In our case, the terms of the series are
    $$a_n = (-1)^n (-z_0 + n^{1/n}).$$
  3. Limit of the Terms: We know $(\lim_{n\to\infty} n^{1/n} = 1).$ Therefore, for the limit of (a_n) to be zero, the constant term $(-z_0)$ must cancel out the 1. This implies $(-z_0=1)$

(Sufficiency - If (z_0 = 1), then the series converges):

  1. Alternating Series Test: If we set (z_0 = 1), our series becomes $$\sum_{n=1}^{\infty} (-1)^n (n^{1/n} - 1).$$ This is an alternating series. To apply the Alternating Series Test, we need to show:
  • Decreasing Terms: The sequence $((n^{1/n} - 1))$ is decreasing for $(n \ge 3).$ (This can be shown using calculus.)
  • Limit to Zero: We already know $(\lim_{n\to\infty} (n^{1/n} - 1) = 0).$
  1. Conclusion of Alternating Series Test: Since both conditions of the Alternating Series Test are met, the series converges when $(z_0 = 1).$

Therefore, the series converges if and only if $(z_0 = 1).$

Additional Notes:

  • Conditional Convergence: The series converges conditionally when $(z_0 = 1).$, as the absolute values of the terms do not form a convergent series.
  • The MRB Constant: The case $(z_0 = 1).$ is precisely the definition of the MRB constant. This theorem shows that any slight deviation from $(z_0 = 1).$ leads to a divergent series.

§5. Is that series, enter image description here absolutely convergent?

The following criterion works remarkably well in determining its lack of absolute convergence.

Proposition: The series
$$\sum_{n \ge 1} (-1)^n (n^{1/n} - 1)$$ is not absolutely convergent.

Proof:

To prove this, we need to show that the series of absolute values, $$\sum_{n \ge 1} |n^{1/n} - 1|$$ diverges.

(1.) Establish a Bound:

We will show that for sufficiently large (n), the following inequality holds: $$n^{1/n} - 1 > \frac{1}{n}$$

(2.) Manipulate the Inequality:

  • Start with the known inequality (for (n > 1)):

$$e > \left(1 + \frac{1}{n}\right)^n$$ for (n > 2): $$n > e > \left(1 + \frac{1}{n}\right)^n$$

  • Take the (n)-th root of both sides (preserving the inequality since all terms are positive): $$n^{1/n} > 1 + \frac{1}{n}$$

  • Rearrange to get the desired inequality: $$n^{1/n} - 1 > \frac{1}{n}$$

(3.) Comparison with Harmonic Series:

  • We know that the Harmonic Series, $(\sum_{n \ge 1} \frac{1}{n})$, diverges.

  • Since we've shown that $( |n^{1/n} - 1| > \frac{1}{n} $) for sufficiently large (n), by the Comparison Test, the series of absolute values: $$\sum_{n \ge 1} |n^{1/n} - 1|$$ also diverges.

(4). Conclusion:

Therefore, the original series $$\sum_{n \ge 1} (-1)^n (n^{1/n} - 1)$$ is not absolutely convergent.

Key Points:

  • Absolute Convergence: A series is absolutely convergent if the series of its absolute values converges.
  • Comparison Test: If $(0 \le a_n \le b_n)$ for all (n), and $(\sum b_n)$ diverges, then $(\sum a_n)$ also diverges.
  • Harmonic Series: The Harmonic Series is a well-known example of a divergent series.

§6 As for efficiency, this discussion presents several series that converge much faster for CMRB. Here are a few of their convergence rates. The following expressions show the sum followed by the closeness to zero of their result after a certain number of partial summations.

[This section is being condensed.]

For how more efficient forms compare,

CTRL+f "the rate of convergence" of 3 major forms.





§7. This discussion is an attempt by this amateur to share discoveries with the greatest audience possible.

Amateurs have made a few significant discoveries, as discussed in enter image description here here. This amateur has perpetually tried to prove, as well as publish, the discoveries and has often asked for help. Great thanks to all of those who offered a hand!

As I shared more of my findings regarding the MRB constant, I wanted to ensure I acknowledged any potential prior work. While my research suggests the unique approach I've taken is original, I'm well aware that mathematics has a long and rich history. It's entirely possible someone else has pondered the same ideas, perhaps in a different context.

If that's the case, I offer my sincere apologies for any oversight in attribution. The last thing the mathematical community needs is another priority dispute. I'm simply excited by the potential this constant seems to hold.

I firmly believe that the connections with the Dirichlet eta function, the intriguing integral representations I discovered, and the computational techniques I've developed offer new avenues for exploration. While the MRB constant itself may seem simple at first glance, it seems to reveal unexpected depths upon closer examination.

It's my hope that these findings will spark further interest and lead to even more elegant and surprising results.

Newton said concerning Leibniz's claim to calculus, anyone's thought was published after his, “To take away the Right of the first inventor and divide it between me and that other would be an Act of Injustice.” [Sir Isaac Newton, The Correspondence of Isaac Newton, 7 v., edited by H. W. Turnbull, J. F. Scott, A. Rupert Hall, and Laura Tilling, Cambridge University Press, 1959–1977: VI, p. 455]

Here is what Google says about the MRB constant as of August 8, 2022, at https://www.google.com/search?q=who+discovered+the+%22MRB+constant%22

enter image description here

In a similar vein to how Newton and Leibniz revolutionized mathematics by distilling the disparate and intricate concepts of their predecessors into the elegant system of calculus, I believe my self-guided work on the CMRB constant follows a parallel path.

For centuries, mathematicians have meticulously explored specific series, often leading to intricate and seemingly isolated results. While each series undoubtedly held its own unique charm and contributed to the broader mathematical landscape, they remained confined within the traditional framework of addition and multiplication.

However, by shifting my focus to series involving $n$th roots, which are elementary and continuous functions; they are with well-defined limits wherever they themselves are defined, I've embarked on a novel approach that transcends those other functions. The CMRB constant and its associated series offer a fresh perspective, unveiling a hidden structure and interconnections that have eluded previous investigations.

Just as calculus opened up new realms of mathematical inquiry and applications, I'm hopeful that my work on the CMRB constant will inspire a similar renaissance in the study of infinite series. By venturing beyond the familiar territory of addition and multiplication, we can unlock a deeper understanding of these mathematical objects and their far-reaching implications.

It's my aspiration that the CMRB constant will transcend its origins and become a cornerstone in the mathematical edifice, if for no other reason, by inspiring future generations to explore its mysteries and uncover its full potential.

  • $n^{1/n}$ helps understand the limiting behavior of sequences and how quantities change with increasing n.
  • It can appear in optimization problems to find the best value for a parameter dependent on n.
  • It relates to probability, particularly in problems involving compound interest and approximations.
  • It might be used as a parameter in mathematical models in various fields like physics or biology.
  • It connects to number theory, such as in the distribution of prime numbers described by the prime number theorem.

As for the presently known significance the MRB constant series, given by

∑ (-1)^n (n^(1/n) - 1) from n=1 to infinity,

a conditionally convergent series whose convergence is intimately linked to the convergence of the derivative of the natural logarithm function, 1/x: This connection arises through a sophisticated manipulation involving the derivatives of the Dirichlet eta function, which is closely related to the Riemann zeta function. As the Riemann zeta function has deep ties to the distribution of prime numbers, the convergence of the MRB constant series indirectly confirms the convergence of the logarithm's derivative.

This convergence behavior of the logarithm's derivative is significant as it implies that the growth rate of the logarithm function decelerates as its input increases. The convergence of the MRB constant series, despite its alternating signs and seemingly unpredictable nature, serves as an elegant mathematical demonstration of this fundamental property of the logarithm function.



§8.

it is defined in many languages on the following 35 websites:



§9. CMRB

= B =

enter image description here

and from Richard Crandall in 2012 courtesy of Apple Computer's advanced computational group, the following computational scheme using equivalent sums of the zeta variant, Dirichlet eta:

enter image description here enter image description here

The expressions Etam and eta0 denote the mth derivative of the Dirichlet eta function of m and 0, respectively.

The cj's are found by the code,

N[ Table[Sum[(-1)^j Binomial[k, j] j^(k - j), {j, 1, k}], {k, 1, 10}]]

(* {-1., -1., 2., 9., 4., -95., -414., 49., 10088., 55521.}*)

Crandall's first "B" is proven below by Gottfried Helms, and it is proven more rigorously, considering the conditionally convergent sum,CMRB sum afterward. Then the formula (44) is a Taylor expansion of eta(s) around s = 0.

n^(1/n)-1

At enter image description here here, we have the following explanation.

Theorem: The MRB constant, (B), and the Dirichlet eta function derivatives satisfy the following relationship:

$$B - \eta^{(1)}(1) = \sum_{m \ge 2} (-1)^{m+1} \frac{\eta^{(m)}(m)}{m!}$$

Proof:

  1. Definitions:
  • Let (B) be the MRB constant, defined as the conditionally convergent series: $$B = \sum_{n \ge 1} (-1)^n (n^{1/n} - 1)$$
  • Define the sequences:
    • $(a_n = (-1)^n (n^{1/n} - 1))$

    • $(b_n = (-1)^n \frac{\log n}{n})$

2Series Manipulation:

Note that $(\eta^{(1)}(1) = \sum_{n \ge 1} b_n) $is also a conditionally convergent series.

Thus, we have the following manipulation, justified by the fact that if two series converge, their difference also converges: $$B - \eta^{(1)}(1) = \sum_{n \ge 1} a_n - b_n = \sum_{n \ge 1} \sum_{m \ge 2} (-1)^n \frac{(\log n)^m}{n^m m!}$$

3 Absolute Convergence:

To rearrange the double sum, we need to establish its absolute convergence. Consider a finite partial sum (S) of the positive terms: $$S = \sum_{n, m} \frac{(\log n)^m}{n^m m!}$$ Rearrange $(S)$ by columns of fixed $(m)$. For $(m = 2),$ an upper bound for the column sum is $$(\frac{\zeta^{(2)}(2)}{2!}).$$ * For $m \ge 3)$, using the inequality $\\log n \le n^{1/2}\ $ for $(n \ge 2),$ we find an upper bound for the (m)-th column: $\sum_{n \ge 2} \frac{(\log n)^m}{n^m m!} \le \sum_{n \ge 2} \frac{1}{n^{m - 1/2} m!} \le \frac{2}{m!(m-2)}$ * Summing these upper bounds gives a convergent series: $$\frac{\zeta^{(2)}(2)}{2!} + \sum_{m \ge 3} \frac{2}{m!(m-2)}$$ * Thus, the double sum is absolutely convergent.

4 Fubini's Theorem and Rearrangement:

  • Absolute convergence allows us to apply Fubini's theorem, which justifies the following rearrangement:

    $$\sum_{n \ge 1} \sum_{m \ge 2} (-1)^n \frac{(\log n)^m}{n^m m!} = \sum_{m \ge 2} \sum_{n \ge 1} (-1)^n \frac{(\log n)^m}{n^m m!} = \sum_{m \ge 2} (-1)^{m+1} \frac{\eta^{(m)}(m)}{m!}$$

5 Conclusion:

  • This final expression proves the desired relationship between the MRB constant and the Dirichlet eta function derivatives.

$$\blacksquare$$

Key Points:

  • Conditional vs. Absolute Convergence: The proof carefully navigates the challenges of manipulating conditionally convergent series by isolating an absolutely convergent portion.
  • Fubini's Theorem: The application of Fubini's theorem is crucial to justify the rearrangement of the double sum.
  • Upper Bounds and Convergence Tests: The proof utilizes calculus techniques and the integral test to establish the absolute convergence of the double sum.

Central Claim: The MRB constant ( $C_{MRB}$) can be represented as a complex integral involving the cosecant and secant functions:

MRB equations

This is not the same as what we have just proven

CMRB vs MKB

$$C_{MRB}=\sum _{t=1}^{\infty } \left((-1)^t z^{r t}\text{//.}\, r\to \frac{\log _z\left(t^{1/t}-1\right)}{t}\right)$$


if the reply below doesn't say "7,000,000 proven to be accurate digits!" You'll need to refresh the page to see it.













POSTED BY: Marvin Ray Burns

"7,000,000 proven to be accurate digits!"

Above, we see a comparison of the nth root and eta derivative expressions, how they will give exactly the same digits of the MRB constant. Below I employ a method that uses my own algorithm for finishing, in quick order, the n^(1/n) computation to many millions of digits has an additional term that gives quadratic convergence and verifies the computation by way of the eta formula. In another messages, it did correctly confirm over 5,500,000 digits computed by nth root and eta formulas in separate runs, but this will do it all at once.

So, "we finally begin or 7-million-digit computation and verification.

This is a "parity check," by the late Richard Crandall:

enter image description here where gamma is the Euler constant. You might check this to see if you think it's true true to a few hundred decimals. This is a kind of "parity check," in that calculaying M in this way should give 300K or whatever equivalent digits.

A good plan is to compute this and also M from the standard series, both to 1 million digits, and compare.

-r

My code to prove that the digits are all correct:

Print["Start time is ", ds = DateString[], "."];
prec = 7000000;
(**Number of required decimals.*.*)ClearSystemCache[];
T0 = SessionTime[];
expM[pre_] := 
  Module[{x11, z, t, a, d, s, k, bb, c, end, iprec, xvals, x, pc, 
    cores = 32(*=4*number of physical cores*), tsize = 128, chunksize,
     start = 1, ll, ctab, pr = Floor[1.005 pre]}, 
   chunksize = cores*tsize;
   n = Floor[1.32 pr];
   end = Ceiling[n/chunksize];
   Print["Iterations required: ", n];
   Print["Will give ", end, 
    " time estimates, each more accurate than the previous."];
   Print["Will stop at ", end*chunksize, 
    " iterations to ensure precsion of around ", pr, 
    " decimal places."]; d = ChebyshevT[n, 3];
   {b, c, s} = {SetPrecision[-1, 1.1*n], -d, 0};
   iprec = 20;
   Do[xvals = Flatten[ParallelTable[Table[ll = start + j*tsize + l;
        x = N[E^(Log[ll]/(ll)), iprec];
        pc = iprec;
        While[pc < pr, pc = Min[4 pc, pr];
         x = SetPrecision[x, pc];
         xll = Power[x, ll]; z = (ll - xll)/xll;
         t = 2 ll - 1; t2 = t^2;
         x *= (1 + 
            SetPrecision[4.5, pc] (ll - 1)/t2 + (ll + 1) z/(2 ll t) - 
            SetPrecision[13.5, pc] ll (ll - 1)/(3 ll t2 + t^3 z))];(**
        N[Exp[Log[ll]/ll],pr]**)
        x - N[Log[ll], prec]/ll, {l, 0, tsize - 1}], {j, 0, 
        cores - 1}, Method -> "FinestGrained"]];
    ctab = ParallelTable[Table[c = b - c;
       ll = start + l - 2;
       b *= 2 (ll + n) (ll - n)/((ll + 1) (2 ll + 1));
       c, {l, chunksize}], Method -> "Automatic"];
    s += ctab.(xvals - 1);
    start += chunksize;
    st = SessionTime[] - T0; kc = k*chunksize;
    ti = (st)/(kc + 10^-4)*(n)/(3600)/(24);
    If[kc > 1, 
     Print["As of  ", DateString[], " there were ", kc, 
      " iterations done in ", N[st, 5], " seconds. That is ", 
      N[kc/st, 5], " iterations/s. ", N[kc/(end*chunksize)*100, 7], 
      "% complete.", " It should take ", N[ti, 6], " days or ", 
      N[ti*24*3600, 4], "s, and finish ", DatePlus[ds, ti], "."]];
    Print[];, {k, 0, end - 1}];
   N[-s/d, pr]];
t2 = Timing[MRBeta2toinf = expM[prec];]; MRBeta1 = 
 EulerGamma Log[2] - 1/2 Log[2]^2;

Print["Finished on ", DateString[], 
  ". Proccessor and actual time were ", t2[[1]], " and ", 
  SessionTime[] - T0, " s. respectively"];
Print["Enter MRB1 to print ", 
 Floor[Precision[
   MRB1]], " digits. The error from a 6,500,000 or more digit 
    calculation that used a different method is  "]; N[
 MRBeta2toinf + MRBeta1 - m6p5M, 10]

7,000,000-digit computation is back on!

Using 3X24 physical processing cores at up to 6.2 GHz and 3X16 Kernels on 1X i9-14900KS and 2X i9-14900K with DDR5 RAM strategically set at 5000, 6666 and 6666 MHz respectively.

Here is the notebook.

Observation point

AAs of  Sun 19 May 2024 00:48:43 there were 2134016 iterations done in 1.4664*10^6 seconds. That is 1.4553 iterations/s. 22.97685% complete. It should take 73.8549 days or 6.381*10^6s, and finish Sun 14 Jul 2024 21:59:47.

A lot could go wrong: long-term power outage, hardware issues, unwanted software or operating system updates. But it will never get done if we don't start sometime!

In case you are waiting on my 7,000,000 digits result, as it would be finishing in 11 days. Mathematica lost its default kernel at this point:

As of Thu 6 Jun 2024 10:25:42 there were 4446208 iterations done in 3.056210^6 seconds. That is 1.4548 iterations/s. 47.87211% complete. It should take 73.8787 days or 6.38310^6s, and finish Sun 14 Jul 2024 22:33:59.

I'm researching into what went wrong.

In order to find the specific cause, I'm trying the 7-mliion-digit computation on the two computers that have given me the least trouble. You can follow my progress here. The 14900KS definitely needs servicing.

POSTED BY: Marvin Ray Burns

While preparing for the verifying of 7-million digits, I broke some speed records with two of my i9-14900K 6400MHZRAM (overclocked CPUs), using Mathematica 11.3 and the lightweight grid. They are generally faster than the 3 node MRB constant supercomputer with remote kernels! These are all absolute timings! How does your computer compare to these? What can you do with other software?

1 2 3 4

That light blue highlight, red text columns result here->7200

For the partial column of two 6000MHz 14900K' with red text and yellow highlight, see speed 100 300 1M XMP tweaked.

For column "=F" (highlighted in green) see linked "10203050100" .

At the bottom, see attached "kernel priority 2 computers.nb" for column =B,

"3 fastest computers together.nb" for column =C

and linked "speed records 5 10 20 30 K"

also speed 50K speed 100k, speed 300k and 30p0683 hour million.nb for column =D .

For the mostly red column including the single, record, 10,114 second 300,000 digit run " =E" is in the linked "3 fastest computers together 2.nb.}

For column "=J," see 574 s 100k , .106.1 sec 50k and 6897s 300k

The 27-hour million-digit computation is found here. <-Big notebook.

enter image description here

This is another comparison of my fastest computers' timings in calculating digits of CMRB: enter image description here

The blue column (using the Wolfram Lightweight Grid) is documented here.

The i9-12900KS column is documented here.

The i9-13900KS column is documented here.

The 300,000 digits result in the i9-13900KS column is here, where it ends with the following:

  Finished on Mon 21 Nov 2022 19:55:52. Processor and actual time 
         were 6180.27 and 10114.4781964 s. respectively

  Enter MRB1 to print 301492 digits. The error from a 6,500,000 or more digit 
 calculation that used a different method is  

 Out[72]= 0.*10^-301494


Remembering that the integrated analog of the MRB constant is M2

NIntegrate[(-1)^n (n^(1/n) - 1), {n, 1, Infinity  I}, 
 Method -> "Trapezoidal", WorkingPrecision -> 20]

These results are from the Timing[] command: M2

The 14900KS at 7200 MHz (extreme tuning!) documented here

The i9-12900KS column is documented here.

"Windows10 2024 i9-14900KS 6000 MHZ RAM" documentation here

POSTED BY: Marvin Ray Burns

While the 7,000,000 digit computation is computing,

Time for a quick memorial:

This discussion began on 1/20/2014.

"This MRB records posting reached a milestone of over 120,000 views on 3/31/2020, around 4:00 am."

"As of 04:00 am 1/2/2021, this discussion had 300,000 views!"

"And as of 08:30 pm 2/3/2021, this discussion had 330,000 views!"

"7:00 pm 10/8/2021 it had 520,000 views!"

"1:40 am 3/2/2022 600,000 views"

"8:25 pm 5/4/2022 650,000 views In the last seven months, this discussion has had as many visitors as it did in its first seven years!"

" 1/20/2023 695,000 views in nine years. That's an average of 8.8 views/hour, or one view every 6.8 minutes" . "1/15/2024 810,223 views in ten years. That's an average of 9.24 views/hour, or one view every 6.49 minutes".

5/14//2024 8:00 am exactly 1,000,000 views. That is 11.06 views per hour:

POSTED BY: Marvin Ray Burns

The geometry of the MRB constant The MRB constant, denoted as ( M ), represents the upper limit point of the sequence of partial sums defined by the series:

$S(x) = \sum_{n=1}^{x} (-1)^n \cdot n^{1/n} $

This series exhibits fascinating geometric properties, which can be visualized through the lengths of the edges of hypercubes with content ( n ) and dimension ( n ). For instance, consider a cube with a volume of 8 units(^3). The length of one of its sides is ( 8^{1/3} = 2 ) units, illustrating the geometric interpretation of $n^{1/n} )$"

https://marvinrayburns.com/ThegeometryV11.pdf

The Minkowski sum is a concept in geometry that involves adding two sets of points in a vector space. Specifically, the Minkowski sum of two sets ( A ) and ( B ) is defined as:

$$ A + B = \{ a + b \mid a \in A, b \in B \} $$

In the context of the MRB constant, the Minkowski sum can be related to the geometric interpretation of the series and the hypercubes. Here's how:

Geometric Interpretation

  1. Hypercubes and Dimensions:
  • The MRB constant in terms of the lengths of the edges of hypercubes with content ( n ) and dimension ( n ). This involves understanding the geometric properties of these hypercubes.
  1. Minkowski Sum and Hypercubes:
  • The Minkowski sum can be used to describe the combination of geometric shapes. The hypercubes with different dimensions can be thought of as sets of points in a higher-dimensional space.
  • When you consider the Minkowski sum of these hypercubes, you are essentially combining their geometric properties. This can help in visualizing the overall structure and behavior of the MRB constant's partial sums.

Application to MRB Constant

  • Alternating Series and Geometry:
  • The alternating series ( S(x) = \sum_{n=1}^{x} (-1)^n \cdot n^{1/n} ) can be interpreted geometrically by considering the Minkowski sum of the hypercubes corresponding to each term in the series.
  • Each term ( (-1)^n \cdot n^{1/n} ) can be seen as contributing to the overall geometric structure, and the Minkowski sum helps in visualizing how these contributions combine.

Conclusion

By using the concept of the Minkowski sum, you can better understand the geometric interpretation of the MRB constant and its partial sums. The Minkowski sum provides a way to combine the geometric properties of the hypercubes, leading to a clearer visualization of the overall structure and behavior of the series.

POSTED BY: Marvin Ray Burns

Here's an outline of the discussion on the real-world applications of the MRB constant from the Wolfram Community:


Outline: Real-World Applications of the MRB Constant

1. Introduction

  • Definition of MRB Constant: Brief overview of the MRB constant, including its mathematical definition and significance.
  • Historical Context: Mention of Marvin Ray Burns, the original investigator of the MRB constant, and the development of the constant over time.

2. Mathematical Properties

  • Series Representation: Explanation of the series representation of the MRB constant.
  • Convergence and Computation: Discussion on the convergence properties and computational methods used to determine the MRB constant.

3. Real-World Applications

  • Physics: Application of the MRB constant in physical theories and models, including its relation to quantum mechanics and statistical mechanics.
  • Engineering: Use of the MRB constant in engineering problems, particularly in signal processing and control systems.
  • Computer Science: Implementation of the MRB constant in algorithms and computational methods, enhancing efficiency in certain calculations.
  • Economics: Potential applications in economic models and financial mathematics, providing insights into market behaviors and trends.

4. Advanced Research and Future Directions

  • Ongoing Investigations: Current research efforts exploring new applications and properties of the MRB constant.
  • Potential Discoveries: Speculation on future breakthroughs and the expanding role of the MRB constant in various scientific fields.

5. Conclusion

  • Summary: Recap of the key points discussed in the outline.
  • Significance: Emphasis on the importance of the MRB constant in both theoretical and practical contexts.

This outline provides a structured overview of the discussion on the real-world applications of the MRB constant. If you need more detailed information on any specific section, feel free to ask!

Source: Conversation with Copilot, 8/26/2024 (1) MRB constant (CMRB) Real-World, and beyond, Applications. https://community.wolfram.com/groups/-/m/t/2712205. (2) Try to beat these MRB constant records! - Wolfram. https://community.wolfram.com/groups/-/m/t/366628. (3) undefined. https://en.wikipedia.org/wiki/MRB_constant. (4) undefined. http://mathworld.wolfram.com/MRBConstant.html.

POSTED BY: Marvin Ray Burns

If this reply is the first one displayed, this page is pretty busy. You might wait a minute by reading on and then refresh the page to see the main posts above.

I forgot about the following trigonometric MRB constant sums and integrals:

POSTED BY: Marvin Ray Burns

§13.

MRB Constant Records,

Google Open AI Chat CPT gave the following introduction to the MRB constant records:

It is not uncommon for researchers and mathematicians to compute large numbers of digits for mathematical constants or other mathematical quantities for various reasons. One reason might be to test and improve numerical algorithms for computing the value of the constant. Another reason might be to use the constant as a benchmark to test the performance of a computer or to compare the performance of different computers. Some people may also be interested in the mathematical properties of the constant, and computing a large number of digits can help to reveal patterns or other features of the constant that may not be apparent with fewer digits. Additionally, some people may simply find the process of calculating a large number of digits to be a challenging and rewarding intellectual pursuit.

My inspiration to compute a lot of digits of CMRB came from this archived linked website by Simon Plouffe.

There, computer mathematicians calculate millions, then billions of digits of constants like pi, when with only 65 decimal places of pi, we could determine the size of the observable universe to within a Planck length (where the uncertainty of our measure of the universe would be greater than the universe itself)!

In contrast, 65 digits of the MRB constant "measures" the value of -1+ssqrt(2)-3^(1/3) up to n^(1/n) where n is 1,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000, which can be called 1 unvigintillion or just 10^66.

And why compute 65 digits of the MRB constant? Because having that much precision is the only way to solve such a problem as

1465528573348167959709563453947173222018952610559967812891154^ m-m, where m is the MRB constant, which gives the near integer "to beat all," 200799291330.9999999999999999999999999999999999999999999999999999999999999900450...

And why compute millions of digits of it? uhhhhhhhhhh.... "Because it's there!" (...Yeah, thanks George Mallory!) And why?? (c'est ma raison d'être!!!)

So, below are reproducible results with methods. The utmost care has been taken to assure the accuracy of the record number of digit calculations. These records represent the advancement of consumer-level computers, 21st-century Iterative methods, and clever programming over the past 23 years.

Here are some record computations of CMRB. Let me know if you know of any others!

1 digit of the

CMRB with my TI-92s, by adding -1+sqrt(2)-3^(1/3)+4^(1/4)-5^(1/5)+6^(1/6)... as far as practicle, was computed. That first digit, by the way, was just 0. Then by using the sum key, to compute $\sum _{n=1}^{1000 } (-1)^n \left(n^{1/n}\right),$ the first correct decimal i.e. (.1). It gave (.1_91323989714) which is close to what Mathematica gives for summing to only an upper limit of 1000. Ti-92's


4 decimals(.1878) of CMRB were computed on Jan 11, 1999, with the Inverse Symbolic Calculator, applying the command evalf( 0.1879019633921476926565342538468+sum((-1)^n* (n^(1/n)-1),n=140001..150000)); where 0.1879019633921476926565342538468 was the running total of t=sum((-1)^n* (n^(1/n)-1),n=1..10000), then t= t+the sum from (10001.. 20000), then t=t+the sum from (20001..30000) ... up to t=t+the sum from (130001..140000).

enter image description here

enter image description here

5 correct decimals (rounded to .18786), in Jan of 1999, were drawn from CMRB using Mathcad 3.1 on a 50 MHz 80486 IBM 486 personal computer operating on Windows 95.

 9 digits of CMRB shortly afterward using Mathcad 7 professional on the Pentium II mentioned below, by summing (-1)^x x^(1/x) for x=1 to 10,000,000, 20,000,000, and many more, then linearly approximating the sum to a what a few billion terms would have given.

 500 digits of CMRB with an online tool called Sigma on Jan 23, 1999. See [http://marvinrayburns.com/Original_MRB_Post.html][10]   if you can read the printed and scanned copy there.

enter image description here Sigma still can be found here.


5,000 digits of CMRB in September of 1999 in 2 hours on a 350 MHz PentiumII,133 MHz 64 MB of RAM using the simple PARI commands \p 5000;sumalt(n=1,((-1)^n*(n^(1/n)-1))), after allocating enough memory.

enter image description here PII

To beat that, it was done on July 4, 2022, in 1 second on the 5.5 GHz CMRBSC 3 with 4800MHz 64 GB of RAM by Newton's method using Convergence acceleration of alternating series. Henri Cohen, Fernando Rodriguez Villegas, Don Zagier acceleration "Algorithm 1" to at least 5000 decimals. (* Newer loop with Newton interior. *)

documentation here

And here

I did it using an i9-14900K, overclocked, with 64GB of 6400MHz RAM. I used my own program. Processor and actual time were 0.796875 and 0.8710556 s, respectively.

 6,995 accurate digits of CMRB were computed on June 10-11, 2003, over a period, of 10 hours, on a 450 MHz P3 with an available 512 MB RAM,

PIII

To beat that, it was done in <2.5 seconds on the MRBCSC 3 on July 7, 2022 (more than 14,400 times as fast!)

documentation here

To beat that, it was done in <1. 684 seconds on April 10, 2024 (more than 21,377 times as fast!). documentation [here][19]:
In[3]:= 10 hour*3600 seconds/hour/(1.684 seconds)

Out[3]= 21377.7

8000 digits of CMRB completed, using a Sony Vaio P4 2.66 GHz laptop computer with 960 MB of available RAM, at 2:04 PM 3/25/2004,

enter image description here


  11,000 digits of CMRB> on March 01, 2006, with a 3 GHz PD with 2 GB RAM available calculated.

 40 000 digits of CMRB in 33 hours and 26 min via my program written in Mathematica 5.2 on Nov 24, 2006. The computation was run on a 32-bit Windows 3 GHz PD desktop computer using 3.25 GB of Ram.
The program was

    Block[{a, b = -1, c = -1 - d, d = (3 + Sqrt[8])^n, 
      n = 131 Ceiling[40000/100], s = 0}, a[0] = 1;
     d = (d + 1/d)/2; For[m = 1, m < n, a[m] = (1 + m)^(1/(1 + m)); m++];
     For[k = 0, k < n, c = b - c;
      b = b (k + n) (k - n)/((k + 1/2) (k + 1)); s = s + c*a[k]; k++];
     N[1/2 - s/d, 40000]]

 60,000 digits of CMRB on July 29, 2007, at 11:57 PM EST in 50.51 hours on a 2.6 GHz AMD Athlon with 64-bit Windows XP. The max memory used was 4.0 GB of RAM.

65,000 digits of CMRB in only 50.50 hours on a 2.66 GHz Core 2 Duo using 64-bit Windows XP on Aug 3, 2007, at 12:40 AM EST, The max memory used was 5.0 GB of RAM.

It looked similar to this stock image: enter image description here


100,000 digits of CMRB on Aug 12, 2007, at 8:00 PM EST, were computed in 170 hours on a 2.66 GHz Core 2 Duo using 64-bit Windows XP. The max memory used was 11.3 GB of RAM. The typical daily record of memory used was 8.5 GB of RAM.
To beat that, on the 4th of July 2022, the same digits in 1/4 of an hour using the MRB constant supercomputer.
To beat that, on the 7th of July 2022, the same digits in 1/5 of an hour. 
To beat that, on the 4th of April 2024, the same digits in 1/6 of an hour. using a pair of i9-14900Ks in parallel (100,000% as fast as the first 100,000 run by a GHz Core 2 Duo!)

see one sixth hour hundred k.


 150,000 digits of CMRB on Sep 23, 2007, at 11:00 AM EST. Computed in 330 hours on a 2.66 GHz Core 2 Duo using 64-bit Windows XP. The max memory used was 22 GB of RAM. The typical daily record of memory used was 17 GB of RAM.

  200,000 digits of CMRB using Mathematica 5.2 on March 16, 2008, at 3:00 PM EST,. Found in 845 hours, on a 2.66 GHz Core 2 Duo using 64-bit Windows XP. The max memory used was 47 GB of RAM. The typical daily record of memory used was 28 GB of RAM.

300,000 digits of CMRB were destroyed (washed away by Hurricane Ike ) on September 13, 2008 sometime between 2:00 PM - 8:00 PM EST. Computed for a long  4015. Hours (23.899 weeks or 1.4454*10^7 seconds) on a 2.66 GHz Core 2 Duo using 64-bit Windows XP. The max memory used was 91 GB of RAM. The Mathematica 6.0 code is used as follows:

    Block[{$MaxExtraPrecision = 300000 + 8, a, b = -1, c = -1 - d, 
     d = (3 + Sqrt[8])^n, n = 131 Ceiling[300000/100], s = 0}, a[0] = 1; 
     d = (d + 1/d)/2; For[m = 1, m < n, a[m] = (1 + m)^(1/(1 + m)); m++]; 
     For[k = 0, k < n, c = b - c; 
      b = b (k + n) (k - n)/((k + 1/2) (k + 1)); s = s + c*a[k]; k++]; 
     N[1/2 - s/d, 300000]]

225,000 digits of CMRB were started with a 2.66 GHz Core 2 Duo using 64-bit Windows XP on September 18, 2008. It was completed in 1072 hours. 

250,000 digits were attempted but failed to be completed to a serious internal error that restarted the machine. The error occurred sometime on December 24, 2008, between 9:00 AM and 9:00 PM. The computation began on November 16, 2008, at 10:03 PM EST. The Max memory used was 60.5 GB.

 250,000 digits of CMRB on Jan 29, 2009, 1:26:19 pm (UTC-0500) EST, with a multiple-step Mathematica command running on a dedicated 64-bit XP using 4 GB DDR2 RAM onboard and 36 GB virtual. The computation took only 333.102 hours. The digits are at http://marvinrayburns.com/250KMRB.txt. The computation is completely documented.

  300000 digit search of CMRB was initiated using an i7 with 8.0 GB of DDR3 RAM onboard on Sun 28 Mar 2010 at 21:44:50 (UTC-0500) EST, but it failed due to hardware problems.

  299,998 Digits of CMRB: The computation began Fri 13 Aug 2010 10:16:20 pm EDT and ended 2.23199*10^6 seconds later |  Wednesday, September 8, 2010. using Mathematica 6.0 for Microsoft Windows (64-bit) (June 19, 2007), which averages 7.44 seconds per digit.using a Dell Studio XPS 8100 i7 860 @ 2.80 GHz with 8GB physical DDR3 RAM. Windows 7 reserved an additional 48.929 GB of virtual Ram.

enter image description here


300,000 digits to the right of the decimal point of CMRB from Sat 8 Oct 2011 23:50:40 to Sat 5 Nov 2011 19:53:42 (2.405*10^6 seconds later). This run was 0.5766 seconds per digit slower than the 299,998 digit computation even though it used 16 GB physical DDR3 RAM on the same machine. The working precision and accuracy goal combination were maximized for exactly 300,000 digits, and the result was automatically saved as a file instead of just being displayed on the front end. Windows reserved a total of 63 GB of working memory, of which 52 GB were recorded as being used. The 300,000 digits came from the Mathematica 7.0 command`
    Quit; DateString[]
    digits = 300000; str = OpenWrite[]; SetOptions[str, 
    PageWidth -> 1000]; time = SessionTime[]; Write[str, 
    NSum[(-1)^n*(n^(1/n) - 1), {n, \[Infinity]}, 
    WorkingPrecision -> digits + 3, AccuracyGoal -> digits, 
    Method -> "AlternatingSigns"]]; timeused = 
    SessionTime[] - time; here = Close[str]
    DateString[]

314159 digits of the constant took 3 tries due to hardware failure. Finishing on September 18, 2012, 314159 digits, taking 59 GB of RAM.  The digits came from the Mathematica 8.0.4 code`

    DateString[]
    NSum[(-1)^n*(n^(1/n) - 1), {n, \[Infinity]}, 
    WorkingPrecision -> 314169, Method -> "AlternatingSigns"] // Timing
    DateString[]

1,000,000 digits of CMRB  for the first time in history in 18 days, 9 hours 11 minutes, 34.253417 seconds by Sam Noble of the Apple Advanced Computation Group.

1,048,576 digits of CMRB in a lightning-fast 76.4 hours, finishing on Dec 11, 2012, were scored by Dr. Richard Crandall, an Apple scientist and head of its advanced computational group. That was on a 2.93 GHz 8-core Nehalem,  1066 MHz, PC3-8500 DDR3 ECC RAM.

    To beat that, in Aug of 2018, 1,004,993 digits in 53.5 hours 34 hours computation time (from the timing command) with 10 DDR4 RAM (of up to 3000 MHz) supported processor cores overclocked up to 4.7 GHz! Search this post for "53.5" for documentation. 

    To beat that, on Sept 21, 2018: 1,004,993 digits in 50.37 hours of absolute time and 35.4 hours of computation time (from the timing command) with 18  (DDR3 and DDR4) processor cores!  Search this post for "50.37 hours" for documentation.**

    To beat that, on May 11, 2019, over 1,004,993 digits in 45.5 hours of absolute time and only 32.5 hours of computation time, using 28 kernels on 18 DDR4 RAM (of up to 3200 MHz) supported cores overclocked up to  5.1 GHz  Search 'Documented in the attached ":3 fastest computers together 3.nb." '  for the post that has the attached documenting notebook.

    To beat that, over 1,004,993 correct digits in 44 hours of absolute time and 35.4206 hours of computation time on 10/19/20, using 3/4 of the MRB constant supercomputer 2 -- see https://www.wolframcloud.com/obj/bmmmburns/Published/44%20hour%20million.nb  for documentation.

    To beat that, a 1,004,993 correct digits computation in 36.7 hours of absolute time and only 26.4 hours of computation time on Sun 15 May 2022 at 06:10:50, using 3/4  of the MRB constant supercomputer 3. Ram Speed was 4800MHz, and all 30 cores were clocked at up to 5.2 GHz.



    To beat that, a 1,004,993 correct digits computation in 31.2319  hours of absolute time and 16.579  hours of computation time from the Timing[] command using 3/4 of the MRB constant supercomputer 4, finishing Dec 5, 2022. Ram Speed was 5200MHz, and all of the 24 performance cores were clocked at up to 5.95 GHz, plus 32 efficiency cores running slower. using 24 kernels on the Wolfram Lightweight grid over an i-12900k, 12900KS, and 13900K.
    To beat that, a 1,004,993 correct digits computation in 30. hours of absolute time on Marh 21, 2024.
    To beat that, a 1,004,993 correct digits computation in 27. hours

The 27-hour million-digit computation is found here <-Big notebook

see also 30 hour million

36.7 hours million notebook

31.2319 hours million


 A little over 1,200,000 digits, previously, of CMRB in 11   days, 21 hours, 17 minutes, and 41 seconds (I finished on March 31, 2013, using a six-core Intel(R) Core(TM) i7-3930K CPU @ 3.20 GHz. see https://www.wolframcloud.com/obj/bmmmburns/Published/36%20hour%20million.nb

for details.


2,000,000 or more digit computation of CMRB on May 17, 2013, using only around 10GB of RAM. It took 37 days 5 hours, 6 minutes 47.1870579 seconds. using a six-core Intel(R) Core(TM) i7-3930K CPU @ 3.20 GHz.

 3,014,991 digits of CMRB,  world record computation of **C**<sub>*MRB*</sub> was finished on Sun 21 Sep 2014 at 18:35:06. It took one month 27 days, 2 hours 45 minutes 15 seconds. The processor time from the 3,000,000+ digit computation was 22 days.The 3,014,991 digits of **C**<sub>*MRB*</sub> with Mathematica 10.0. using Burns' new version of Richard Crandall's code in the attached 3M.nb, optimized for my platform and large computations. Also, a six-core Intel(R) Core(TM) i7-3930K CPU @ 3.20 GHz with 64 GB of RAM, of which only 16 GB was used. Can you beat it (in more digits, less memory used, or less time taken)? This confirms that my previous "2,000,000 or more digit computation" was accurate to 2,009,993 digits. they were used to check the first several digits of this computation. See attached 3M.nb for the full code and digits.

enter image description here Over 4 million digits of CMRB were finished on Wed 16 Jan 2019, 19:55:20. It took four years of continuous tries. This successful run took 65.13 days absolute time, with a processor time of 25.17 days, on a 3.7 GHz overclocked up to 4.7 GHz on all cores Intel 6 core computer with 3000 MHz RAM. According to this computation, the previous record, 3,000,000+ digit computation, was accurate to 3,014,871 decimals, as this computation used my algorithm for computing n^(1/n) as found in chapter 3 in the paper at

https://www.sciencedirect.com/science/article/pii/0898122189900242 and the 3 million+ computation used Crandall's algorithm. Both algorithms outperform Newton's method per calculation and iteration.


Example use of M R Burns' algorithm to compute 123456789^(1/123456789) 10,000,000 digits:

ClearSystemCache[]; n = 123456789;
(*n is the n in n^(1/n)*)
x = N[n^(1/n),100];
(*x starts out as a relatively small precision approximation to n^(1/n)*)
pc = Precision[x]; pr = 10000000;
(*pr is the desired precision of your n^(1/n)*)
Print[t0 = Timing[While[pc < pr, pc = Min[4 pc, pr];
x = SetPrecision[x, pc];
y = x^n; z = (n - y)/y;
t = 2 n - 1; t2 = t^2;
x = x*(1 + SetPrecision[4.5, pc] (n - 1)/t2 + (n + 1) z/(2 n t)
- SetPrecision[13.5, pc] n (n - 1)/(3 n t2 + t^3 z))];
(*You get a much faster version of N[n^(1/n),pr]*)
N[n - x^n, 10]](*The error*)];
ClearSystemCache[]; n = 123456789; Print[t1 = Timing[N[n - N[n^(1/n), pr]^n, 10]]]

 Gives

  {25.5469,0.*10^-9999984}

  {101.359,0.*10^-9999984}




  More information is available upon request.

 More than 5 million digits of CMRB were found on Fri 19 Jul 2019, 18:49:02; methods are described in the reply below, which begins with "Attempts at a 5,000,000 digit calculation ."   For this 5 million digit calculation of **C**<sub>*MRB*</sub> using the 3 node MRB supercomputer: processor time was 40 days. And the actual time was 64 days.   That is in less absolute time than the 4-million-digit computation, which used just one node.

Six million digits of CMRB after eight tries in 19 months. (Search "8/24/2019 It's time for more digits!" below.) finishing on Tue, 30 Mar 2021, at 22:02:49 in 160 days.
    The MRB constant supercomputer 2 said the following:
    Finished on Tue 30 Mar 2021, 22:02:49. computation and absolute time were
    5.28815859375*10^6 and 1.38935720536301*10^7 s. respectively
    Enter MRB1 to print 6029991 digits. The error from a 5,000,000 or more-digit calculation that used a different method is      
    0.*10^-5024993.

That means that the 5,000,000-digit computation Was accurate to 5024993 decimals!!!

enter image description here


5,609,880, verified by two distinct algorithms for x^(1/x), digits of CMRB on Thu 4 Mar 2021 at 08:03:45. The 5,500,000+ digit computation using a totally different method showed that many decimals are in common with the 6,000,000+ digit computation in 160.805 days.

6,500,000 digits of CMRB on my second try,

Successful code was:

In[2]:= Needs["SubKernels`LocalKernels`"]
Block[{$mathkernel = $mathkernel <> " -threadpriority=2"}, 
 LaunchKernels[]]

Out[3]= {"KernelObject"[1, "local"], "KernelObject"[2, "local"], 
 "KernelObject"[3, "local"], "KernelObject"[4, "local"], 
 "KernelObject"[5, "local"], "KernelObject"[6, "local"], 
 "KernelObject"[7, "local"], "KernelObject"[8, "local"], 
 "KernelObject"[9, "local"], "KernelObject"[10, "local"]}

In[4]:= Print["Start time is ", ds = DateString[], "."];
prec = 6500000;
(**Number of required decimals.*.*)ClearSystemCache[];
T0 = SessionTime[];
expM[pre_] := 
  Module[{a, d, s, k, bb, c, end, iprec, xvals, x, pc, cores = 16(*=4*
    number of physical cores*), tsize = 2^7, chunksize, start = 1, ll,
     ctab, pr = Floor[1.005 pre]}, chunksize = cores*tsize;
   n = Floor[1.32 pr];
   end = Ceiling[n/chunksize];
   Print["Iterations required: ", n];
   Print["Will give ", end, 
    " time estimates, each more accurate than the previous."];
   Print["Will stop at ", end*chunksize, 
    " iterations to ensure precsion of around ", pr, 
    " decimal places."]; d = ChebyshevT[n, 3];
   {b, c, s} = {SetPrecision[-1, 1.1*n], -d, 0};
   iprec = Ceiling[pr/396288];
   Do[xvals = Flatten[Parallelize[Table[Table[ll = start + j*tsize + l;
         x = N[E^(Log[ll]/(ll)), iprec];
         pc = iprec;
         While[pc < pr/65536, pc = Min[3 pc, pr/65536];
          x = SetPrecision[x, pc];
          y = x^ll - ll;
          x = x (1 - 2 y/((ll + 1) y + 2 ll ll));];
         (**N[Exp[Log[ll]/ll],pr/99072]**)
         x = SetPrecision[x, pr/16384];
         xll = x^ll; z = (ll - xll)/xll;
         t = 2 ll - 1; t2 = t^2;
         x = 
          x*(1 + SetPrecision[4.5, pr/16384] (ll - 1)/
               t2 + (ll + 1) z/(2 ll t) - 
             SetPrecision[13.5, 
               pr/16384] ll (ll - 1) 1/(3 ll t2 + t^3 z));(*N[Exp[Log[
         ll]/ll],pr/4096]*)x = SetPrecision[x, pr/4096];
         xll = x^ll; z = (ll - xll)/xll;
         t = 2 ll - 1; t2 = t^2;
         x = 
          x*(1 + SetPrecision[4.5, pr/4096] (ll - 1)/
               t2 + (ll + 1) z/(2 ll t) - 
             SetPrecision[13.5, 
               pr/4096] ll (ll - 1) 1/(3 ll t2 + t^3 z));(*N[Exp[Log[
         ll]/ll],pr/4096]*)x = SetPrecision[x, pr/1024];
         xll = x^ll; z = (ll - xll)/xll;
         t = 2 ll - 1; t2 = t^2;
         x = 
          x*(1 + SetPrecision[4.5, pr/1024] (ll - 1)/
               t2 + (ll + 1) z/(2 ll t) - 
             SetPrecision[13.5, 
               pr/1024] ll (ll - 1) 1/(3 ll t2 + t^3 z));(*N[Exp[Log[
         ll]/ll],pr/1024]*)x = SetPrecision[x, pr/256];
         xll = x^ll; z = (ll - xll)/xll;
         t = 2 ll - 1; t2 = t^2;
         x = 
          x*(1 + SetPrecision[4.5, pr/256] (ll - 1)/
               t2 + (ll + 1) z/(2 ll t) - 
             SetPrecision[13.5, 
               pr/256] ll (ll - 1) 1/(3 ll t2 + t^3 z));(*N[Exp[Log[
         ll]/ll],pr/256]*)x = SetPrecision[x, pr/64];
         xll = x^ll; z = (ll - xll)/xll;
         t = 2 ll - 1; t2 = t^2;
         x = 
          x*(1 + SetPrecision[4.5, pr/64] (ll - 1)/
               t2 + (ll + 1) z/(2 ll t) - 
             SetPrecision[13.5, 
               pr/64] ll (ll - 1) 1/(3 ll t2 + t^3 z));(**N[Exp[Log[
         ll]/ll],pr/64]**)x = SetPrecision[x, pr/16];
         xll = x^ll; z = (ll - xll)/xll;
         t = 2 ll - 1; t2 = t^2;
         x = 
          x*(1 + SetPrecision[4.5, pr/16] (ll - 1)/
               t2 + (ll + 1) z/(2 ll t) - 
             SetPrecision[13.5, 
               pr/16] ll (ll - 1) 1/(3 ll t2 + t^3 z));(**N[Exp[Log[
         ll]/ll],pr/16]**)x = SetPrecision[x, pr/4];
         xll = x^ll; z = (ll - xll)/xll;
         t = 2 ll - 1; t2 = t^2;
         x = 
          x*(1 + SetPrecision[4.5, pr/4] (ll - 1)/
               t2 + (ll + 1) z/(2 ll t) - 
             SetPrecision[13.5, 
               pr/4] ll (ll - 1) 1/(3 ll t2 + t^3 z));(**N[Exp[Log[
         ll]/ll],pr/4]**)x = SetPrecision[x, pr];
         xll = x^ll; z = (ll - xll)/xll;
         t = 2 ll - 1; t2 = t^2;
         x = 
          x*(1 + SetPrecision[4.5, pr] (ll - 1)/
               t2 + (ll + 1) z/(2 ll t) - 
             SetPrecision[13.5, 
               pr] ll (ll - 1) 1/(3 ll t2 + t^3 z));(*N[Exp[Log[ll]/
         ll],pr]*)x, {l, 0, tsize - 1}], {j, 0, cores - 1}]]];
    ctab = ParallelTable[Table[c = b - c;
       ll = start + l - 2;
       b *= 2 (ll + n) (ll - n)/((ll + 1) (2 ll + 1));
       c, {l, chunksize}], Method -> "Automatic"];
    s += ctab.(xvals - 1);
    start += chunksize;
    st = SessionTime[] - T0; kc = k*chunksize;
    ti = (st)/(kc + 10^-4)*(n)/(3600)/(24);
    If[kc > 1, 
     Print["As of  ", DateString[], " there were ", kc, 
      " iterations done in ", N[st, 5], " seconds. That is ", 
      N[kc/st, 5], " iterations/s. ", N[kc/(end*chunksize)*100, 7], 
      "% complete.", " It should take ", N[ti, 6], " days or ", 
      N[ti*24*3600, 4], "s, and finish ", DatePlus[ds, ti], "."]];
    Print[];, {k, 0, end - 1}];
   N[-s/d, pr]];
t2 = Timing[MRB1 = expM[prec];]; Print["Finished on ", 
 DateString[], ". Proccessor and actual time were ", t2[[1]], " and ",
  SessionTime[] - T0, " s. respectively"];
Print["Enter MRB1 to print ", 
 Floor[Precision[
   MRB1]], " digits. The error from a 5,000,000 or more digit \
calculation that used a different method is  "]; N[M6M - MRB1, 20]

enter image description here

The MRB constant supercomputer replied,

Finished on Wed 16 Mar 2022 02: 02: 10. computation and absolute time
were 6.26628*10^6 and 1.60264035419592*10^7s respectively Enter MRB1
to print 6532491 digits. The error from a 6, 000, 000 or more digit
the calculation that used a different method is 
0.*10^-6029992.

"Computation time" 72.526 days.

 "Absolute time" 185.491 days.

It would have taken my first computer, a TRS-80 at least 4307 years with today's best mathematical algorithms. 15 GHz/1.77 MHZ 185.491 days1 year/(365 days) enter image description here

It was instantly checked to 6,029,992 or so, digits by the program itself. A 7-million-digit run using different number of digits of Exp[Log[ll]/ll] computed by each method, is in process, which will verify the residue of digits.






POSTED BY: Marvin Ray Burns

Programs and formulas to compute the integrated analog of the MRB constant

The efficient programs

Wed 29 Jul 2015 11:40:10

From an initial accuracy of only 7 digits,

0.07077603931152880353952802183028200137`19.163032309866352 - 
 0.68400038943793212918274445999266112671`20.1482024033675 I - \
(NIntegrate[(-1)^t (t^(1/t) - 1), {t, 1, Infinity}, 
    WorkingPrecision -> 20] - 2 I/Pi)

enter image description here

we have the first efficient program to compute the integrated analog (MKB) of the MRB constant, which is good for 35,000 digits.

Block[{$MaxExtraPrecision = 200}, prec = 4000; f[x_] = x^(1/x);
 ClearAll[a, b, h];
 Print[DateString[]];
 Print[T0 = SessionTime[]];

 If[prec > 35000, d = Ceiling[0.002 prec], 
  d = Ceiling[0.264086 + 0.00143657 prec]];

 h[n_] := 
  Sum[StirlingS1[n, k]*
    Sum[(-j)^(k - j)*Binomial[k, j], {j, 0, k}], {k, 1, n}];

 h[0] = 1;
 g = 2 I/Pi - Sum[-I^(n + 1) h[n]/Pi^(n + 1), {n, 1, d}];

 sinplus1 := 
  NIntegrate[
   Simplify[Sin[Pi*x]*D[f[x], {x, d + 1}]], {x, 1, Infinity}, 
   WorkingPrecision -> prec*(105/100), 
   PrecisionGoal -> prec*(105/100)];

 cosplus1 := 
  NIntegrate[
   Simplify[Cos[Pi*x]*D[f[x], {x, d + 1}]], {x, 1, Infinity}, 
   WorkingPrecision -> prec*(105/100), 
   PrecisionGoal -> prec*(105/100)];

 middle := Print[SessionTime[] - T0, " seconds"];

 end := Module[{}, Print[SessionTime[] - T0, " seconds"];
   Print[c = Abs[a + b]]; Print[DateString[]]];


 If[Mod[d, 4] == 0, 
  Print[N[a = -Re[g] - (1/Pi)^(d + 1)*sinplus1, prec]];
  middle;
  Print[N[b = -I (Im[g] - (1/Pi)^(d + 1)*cosplus1), prec]];
  end];


 If[Mod[d, 4] == 1, 
  Print[N[a = -Re[g] - (1/Pi)^(d + 1)*cosplus1, prec]];
  middle;
  Print[N[b = -I (Im[g] + (1/Pi)^(d + 1)*sinplus1), prec]]; end];

 If[Mod[d, 4] == 2, 
  Print[N[a = -Re[g] + (1/Pi)^(d + 1)*sinplus1, prec]];
  middle;
  Print[N[b = -I (Im[g] + (1/Pi)^(d + 1)*cosplus1), prec]];
  end];

 If[Mod[d, 4] == 3, 
  Print[N[a = -Re[g] + (1/Pi)^(d + 1)*cosplus1, prec]];
  middle;
  Print[N[b = -I (Im[g] - (1/Pi)^(d + 1)*sinplus1), prec]];
  end];]

May 2018

I got substantial improvement in calculating the digits of MKB by using V11.3 in May 2018, my new computer (processor Intel(R) Core(TM) i7-7700 CPU @ 3.60GHz, 3601 MHz, 4 Core(s), 8 Logical Processor(s) with 16 GB 2400 MH DDR4 RAM):

Digits  Seconds
2000    67.5503022
3000    217.096312
4000    514.48334
5000    1005.936397
10000   8327.18526
 20000  71000

They are found in the attached 2018 quad MKB.nb.

They are twice as fast,(or more) as my old records with the same program using Mathematica 10.2 in July 2015 on my old big computer (a six-core Intel(R) Core(TM) i7-3930K CPU @ 3.20 GHz 3.20 GHz with 64 GB of 1066 MHz DDR3 RAM):

digits          seconds

2000    256.3853590 
3000    794.4361122
4000       1633.5822870
5000        2858.9390025
10000      17678.7446323 
20000      121431.1895170
40000       I got error msg

May 2021

After finding the following rapidly converging integral for MKB, MKB proposition

[I'm trying to prove this.]



I finally computed 200,000 digits of MKB (0.070776 - 0.684 I...) Started ‎Saturday, ‎May ‎15, ‎2021, ‏‎10: 54: 17 AM, and finished at 9:23:50 am EDT | Friday, August 20, 2021, for a total of 8.37539*10^6 seconds or 96 days 22 hours 29 minutes 50 seconds.

The full computation, verification to 100,000 digits, and hyperlinks to various digits are found below at 200k MKB A.nb. The code was

g[x_] = x^(1/x); u := (t/(1 - t)); Timing[
 MKB1 = (-I Quiet[
      NIntegrate[(g[(1 + u I)])/(Exp[Pi u] (1 - t)^2), {t, 0, 1}, 
       WorkingPrecision -> 200000, Method -> "DoubleExponential", 
       MaxRecursion -> 17]] - I/Pi)]

enter image description here

{See proof at the bottom of this reply.]

After finding the above more rapidly converging integral for MKB, In only 80.5 days, 189,330 real digits and 166,700 imaginary were confirmed to be correct by the following different formula. as Seen at https://www.wolframcloud.com/obj/bmmmburns/Published/2nd%20200k%20MRB.nb

All digits at

https://www.wolframcloud.com/obj/bmmmburns/Published/200K%20confirmed%20MKB.nb (Recommended to open in desktop Mathematica.)

N[(Timing[
   FM2200K - (NIntegrate[(Exp[Log[t]/t - Pi t/I]), {t, 1, Infinity I},
        WorkingPrecision -> 200000, Method -> "Trapezoidal", 
       MaxRecursion -> 17] - I/Pi)]), 20]

enter image description here

I've learned more about what MaxRecusion is required for 250,000 digits to be verified from the two different formulas, and they are being computed as I write. It will probably take over 100 days. Let's try to formalize this derivation.

Proof:

Theorem:

Let MKB be defined as the integral:

$ MKB = \int_1^\infty exp(\pi i t) (t^{1/t} - 1) dt$

Then, an equivalent expression for MKB is:

$ MKB = \int_1^\infty exp \left( \frac{log(t)}{t} - \frac{\pi t}{i} \right) dt + \frac{i}{\pi} $

Proof:1 using complex analysis enter image description here enter image description here enter image description here enter image description here

Proof:2 by series expansion

  1. Series Expansion: We start by using the series expansion of the exponential function:

```

$ e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + ...$ ```

Let $x = \frac{log(t)}{t}$. Substituting into the series expansion, we get:

```

$ e^{\frac{log(t)}{t}} = 1 + \frac{log(t)}{t} + \frac{log^2(t)}{2! t^2} + \frac{log^3(t)}{3! t^3} + ... $ ```

  1. Manipulating the Integral:

Now, let's substitute this back into the integral expression for MKB:

```

$ MKB = \int_1^\infty exp(\pi i t) (t^{1/t} - 1) dt = \int_1^\infty exp(\pi i t) \left( e^{\frac{log(t)}{t}} - 1 \right) dt $ ```

Expanding using the series from step 1, and noting that the first term of the series cancels with the -1:

```

$ MKB = \int_1^\infty exp(\pi i t) \left( \frac{log(t)}{t} + \frac{log^2(t)}{2! t^2} + \frac{log^3(t)}{3! t^3} + ... \right) dt $ ```

  1. Key Identity:

The image provided states (without proof) the following identity:

```

$ e^{\pi i t} \frac{log(t)}{t} = \frac{log(t)}{t} e^{- \pi i} $ ```

Using Euler's formula, $e^{- \pi i} = -1$, this simplifies to:

```

$ e^{\pi i t} \frac{log(t)}{t} = -\frac{log(t)}{t}$ ```

  1. Simplifying the Integral:

Substituting the identity into the integral, we obtain:

```

$ MKB = \int_1^\infty \left( -\frac{log(t)}{t} + exp(\pi i t) \left( \frac{log^2(t)}{2! t^2} + \frac{log^3(t)}{3! t^3} + ... \right) \right) dt$ ```

The first term is a standard integral:

```

$ \int_1^\infty -\frac{log(t)}{t} dt = \left[ -\frac{1}{2} log^2(t) \right]_1^\infty = \frac{1}{2} log^2(1) - \frac{1}{2} log^2(\infty) = 0 - (-\infty) = \infty$ ```

  1. Regularization:

The integral diverges. The image shows that, by subtracting $\frac{1}{\pi i}$ and taking the imaginary part, we can regularize the integral.

After applying the regularization, one would then proceed to show that the infinite sum of the higher-order terms converges, and its imaginary part equals zero. This would leave:

```

$ Im[MKB] = Im \left[\int_1^\infty exp \left( \frac{log(t)}{t} - \frac{\pi t}{i} \right) dt + \frac{i}{\pi} \right] = \frac{1}{\pi}$ ```

  1. Final Form:

    Taking the exponential of both sides and multiplying by $\pi i$ yields the desired form:

```

$ MKB = \int_1^\infty exp \left( \frac{log(t)}{t} - \frac{\pi t}{i} \right) dt + \frac{i}{\pi} $ ```

Important Note: This proof is incomplete, as it relies on an unproven identity and skips the details of regularization and the convergence of the infinite sum. However, it provides a formal structure for the argument presented in the image.

Attachments:
POSTED BY: Marvin Ray Burns

I calculated 6,500,000 digits of the MRB constant!!

The MRB constant supercomputer said,

Finished on Wed 16 Mar 2022 02 : 02 : 10. Processor and actual time were 6.2662810^6 and 1.6026403541959210^7 s.respectively Enter MRB1 to print 6532491 digits. The error from a 6, 000, 000 or more digit calculation that used a different method is 0.*10^-6029992

"Processor time" 72.526 days

"Actual time" 185.491 days

For the digits see the attached 6p5millionMRB.nb. For the documentation of the computation see 2nd 6p5 million.nb.

POSTED BY: Marvin Ray Burns

...including all the methods used to compute CMRB and their efficiency.

While waiting for results on the 2nd try of calculating 6,500,000 digits of the MRB constant (CMRB), I thought I would compare the convergence rate of 3 different primary forms of it. They are listed from slowest to fastest.

POSTED BY: Marvin Ray Burns

Beyond any shadow of a doubt, I verified 5,609,880 digits of the MRB constant on Thu 4 Mar 2021 08:03:45. The 5,500,000+ digit computation using a totally different method showed about that many decimals in common with the 6,000,000+ digit computation. The method for the 6,000,000 run is found in a few messages above in the attached notebook titled "MRBSC2 6 million 1st fourth.nb."

The 5,500,000+digit run is found below in the attached "5p5million.nb," including the verified 5,609,880 digits.

(*Fastest (at RC's end) as of 30 Nov 2012.*)prec = 5500000;(*Number \
of required decimals.*)ClearSystemCache[];
T0 = SessionTime[];
expM[pre_] := 
  Module[{a, d, s, k, bb, c, n, end, iprec, xvals, x, pc, cores = 4, 
    tsize = 2^7, chunksize, start = 1, ll, ctab, 
    pr = Floor[1.02 pre]}, chunksize = cores*tsize;
   n = Floor[1.32 pr];
   end = Ceiling[n/chunksize];
   Print["Iterations required: ", n];
   Print["end ", end];
   Print[end*chunksize];
   d = N[(3 + Sqrt[8])^n, pr + 10];
   d = Round[1/2 (d + 1/d)];
   {b, c, s} = {SetPrecision[-1, 1.1*n], -d, 0};
   iprec = Ceiling[pr/27];
   Do[xvals = Flatten[ParallelTable[Table[ll = start + j*tsize + l;
        x = N[E^(Log[ll]/(ll)), iprec];

      (*N[Exp[Log[ll]/ll], pr/27]*)

        pc = iprec;
        While[pc < pr, pc = Min[3 pc, pr];
         x = SetPrecision[x, pc];
         y = x^ll - ll;
         x = x (1 - 2 y/((ll + 1) y + 2 ll ll));];

      (*N[Exp[Log[ll]/ll], pr]*)

       x, {l, 0, tsize - 1}], {j, 0, cores - 1}, 
       Method -> "EvaluationsPerKernel" -> 1]];
    ctab = Table[c = b - c;
      ll = start + l - 2;
      b *= 2 (ll + n) (ll - n)/((ll + 1) (2 ll + 1));
      c, {l, chunksize}];
    s += ctab.(xvals - 1);
    start += chunksize;
    Print["done iter ", k*chunksize, " ", SessionTime[] - T0];, {k, 0,
      end - 1}];
   N[-s/d, pr]];

t2 = Timing[MRBtest2 = expM[prec];];
N[MRBtest2 - MRB, 20]
POSTED BY: Marvin Ray Burns

...including the dispersion of the 0-9th decimals in CMRB decimal expansions.

Distribution of digits

Here is the distribution of digits within the first 6,000,000 decimal places (.187859,,,), "4" shows up more than other digits, followed by "0," "8" and "7."

enter image description here

Here is the distribution of digits within the first 5,000,000 decimal places (.187859,,,), "4" shows up a lot more than other digits, followed by "0," "8" and "6." enter image description here

Here is a similar distribution over the first 4,000,000: enter image description here

3,000,000 digits share a similar distribution:

enter image description here

Over the first 2 and 1 million digits "4" was not so well represented. So, the heavy representation of "4" is shown to be a growing phenomenon from 2 million to 5 million digits. However, "1,2,and 5" still made a very poor showing: enter image description here

I attached more than 6,000,000 digits of the MRB constant.

Attachments:
POSTED BY: Marvin Ray Burns

I DECLARE VICTORY!

I computed 6,000,000 digits of the MRB constant, finishing on Tue 30 Mar 2021 22:02:49. The MRB constant supercomputer 2 said the following:

  Finished on Tue 30 Mar 2021 22:02:49. Processor and actual time were 5.28815859375*10^6 s and 1.38935720536301*10^7 s. or 61 days and 161 days respectively.

  Enter MRB1 to print 6029991 digits. The error from a 5,000,000 or more digit calculation that used a different method is  

  0.*10^-5024993

That means that the 5,000,000 digit computation was actually accurate to 5024993 decimals!!!

For the complete blow-by-blow see MRBSC2 6 million 1st fourth.nb.

Attachments:
POSTED BY: Marvin Ray Burns
POSTED BY: Marvin Ray Burns

On 2/24/2020 at 4:35 pm, I started a 10,000 digit calculation of the MRB constant using the integral

enter image description here

Here is the code:

First, compute 10,000 digits using Mathematica's "AlternatingSigns" option.

ms = NSum[(-1)^n (n^(1/n) - 1), {n, 1, Infinity}, 
   Method -> "AlternatingSigns", WorkingPrecision -> 10000];

Then compute the integral.

Timing[mi = 
NIntegrate[
Csch[\[Pi] t] E^((t ArcTan[t])/(1 + t^2)) (1 + 
t^2)^(1/(2 + 2 t^2)) Sin[(2 ArcTan[t] - t Log[1 + t^2])/(2 + 
2 t^2)], {t, 0, \[Infinity]}, WorkingPrecision -> 5000, 
Method -> "Trapezoidal", PrecisionGoal -> 10000, 
MaxRecursion -> 50]]

It is still working now on 2/26/2020 at 6:05 pm.

I messed up, but I'll let the computation complete anyway.

(My integral's result will only have around 5000 digits of precision -- so I should expect it to only be that accurate when I compare it to the sum.) But, this computation will give the approximate time required for a 10,000 digit calculation with that MaxRecursion (which might be way more than enough!)

It is still running at 7:52 am on 2/27/2020. The computer has been running at right around 12 GB of RAM committed and 9 GB of RAM in use, since early in the computation.

I started a second calculation on a similar computer. This one will be faster and give us a full 10,000 digits. But I reduced the MaxRecursion somewhat significantly. We'll see if all 10 k digits are right...

code

Timing[mi = 
  NIntegrate[
   Csch[\[Pi] t] E^((t ArcTan[t])/(1 + t^2)) (1 + 
       t^2)^(1/(2 + 2 t^2)) Sin[(2 ArcTan[t] - t Log[1 + t^2])/(2 + 
        2 t^2)], {t, 0, \[Infinity]}, WorkingPrecision -> 10000, 
   Method -> "Trapezoidal", PrecisionGoal -> 10000, 
   MaxRecursion -> 35]]

That lower threshold for MaxRecursion worked just fine!!!!!!!!!!!!!!! It took only 7497.63 seconds (roughly 2 hours) to calculate 10,000 accurate digits of the MRB constant from the integral.

2/27/2020 at 9:15 PM:

I just now started15,000 and a 20,000 digit computations of the integral form of the MRB constant. The 15,000 digit calculation of the MRB constant through the integral,enter image description here finished in 15,581s (4.328 hours) and was correct to all 15,000 digits!!!!!!!

I also calculated 20,000 correct digits in 51,632s (14.34 hr) using the integral code

Timing[mi = 
  NIntegrate[
   Csch[\[Pi] t] E^((t ArcTan[t])/(1 + t^2)) (1 + 
       t^2)^(1/(2 + 2 t^2)) Sin[(2 ArcTan[t] - t Log[1 + t^2])/(2 + 
        2 t^2)], {t, 0, \[Infinity]}, WorkingPrecision -> 20000, 
   Method -> "Trapezoidal", PrecisionGoal -> 20000, 
   MaxRecursion -> 30]]

Furthermore, I calculated 25,000 correct digits in 77,212.9s (21.45 hr) using the integral code

Timing[mi = 
  NIntegrate[
   Csch[\[Pi] t] E^((t ArcTan[t])/(1 + t^2)) (1 + 
       t^2)^(1/(2 + 2 t^2)) Sin[(2 ArcTan[t] - t Log[1 + t^2])/(2 + 
        2 t^2)], {t, 0, \[Infinity]}, WorkingPrecision -> 25000, 
   Method -> "Trapezoidal", PrecisionGoal -> 25000, 
   MaxRecursion -> 30]]

I think that does wonders to confirm the true approximated value of the constant. As calculated by both

enter image description here and enter image description here to at least 25,000 decimals, the true value of the MRB constant is

ms=mi≈ [Attached "MRB to 25k confirmed digits.txt"].

Computation and check of 25k digit integral calculation found in "comp of 25k confirmed digits.nb".

As 0f March 2, 2020, I'm working on timed calculations of 30k,50k and 100k digits of the integral. enter image description here

I finished a 30,000 accurate digit computation of the MRB constant via an integral in 78 hours. See "comp of 25k and 30k confirmed digits b.nb" for the digits and program.

Also, I finished a 50,000 accurate digit computation of the MRB constant via an integral in 6.48039 days. See "up to 50k digits of a MRB integral.nb" for the digits and program.

POSTED BY: Marvin Ray Burns
Attachments:
POSTED BY: Marvin Ray Burns

Finished on Wed 16 Jan 2019 19:55:20, I computed over 4 million digits of the MRB constant!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!..... It took 65.13 days with a processor time of 25.17 days.On a 3.7 GH overclocked up to 4.7 GH on all cores Intel 6 core computer with 3000 MHz RAM.

See attached notebook.

Watch my reaction here.

Attachments:
POSTED BY: Marvin Ray Burns

nice system!

POSTED BY: l van Veen

The new sum is this.

Sum[(-1)^(k + 1)*(-1 + (1 + k)^(1/(1 + k)) - Log[1 + k]/(1 + k) - 
         Log[1 + k]^2/(2*(1 + k)^2)), {k, 0, Infinity}] 

That appears to be the same as for MRB except now we subtract two terms from the series expansion at the origin of k^(1/k). For each k these terms are Log[k]/k + 1/2*(Log[k]/k)^2. Accounting for the signs (-1)^k and summing, as I did earlier for just that first term, we get something recognizable.

Sum[(-1)^(k)*(Log[k]/(k) + Log[k]^2/(2*k^2)), {k, 1, Infinity}]

(* Out[21]= 1/24 (24 EulerGamma Log[2] - 2 EulerGamma \[Pi]^2 Log[2] - 
   12 Log[2]^2 - \[Pi]^2 Log[2]^2 + 24 \[Pi]^2 Log[2] Log[Glaisher] - 
   2 \[Pi]^2 Log[2] Log[\[Pi]] - 6 (Zeta^\[Prime]\[Prime])[2]) *)

So what does this buy us? For one thing, we get even better convergence from brute force summation, because now our largest terms are O((logk/k)^3) and alternating (which means if we sum in pairs it's actually O~(1/k^4) with O~ denoting the "soft-oh" wherein one drops polylogarithmic factors).

How helpful is this? Certainly it cannot hurt. But even with 1/k^4 size terms, it takes a long time to get even 40 digits, let alone thousands. So there is more going on in that Crandall approach.

POSTED BY: Daniel Lichtblau

Daniel Lichtblau and others, I just deciphered an Identity Crandall used for checking computations of the MRB constant just before he died. It is used in a previous post about checking, where I said it was hard to follow. The MRB constant is B here. B=`enter image description here In input form that is

   B= Sum[(-1)^(k + 1)*(-1 + (1 + k)^(1/(1 + k)) - Log[1 + k]/(1 + k) - 
         Log[1 + k]^2/(2*(1 + k)^2)), {k, 0, Infinity}] + 
     1/24 (\[Pi]^2 Log[2]^2 - 
        2 \[Pi]^2 Log[
          2] (EulerGamma + Log[2] - 12 Log[Glaisher] + Log[\[Pi]]) - 
        6 (Zeta^\[Prime]\[Prime])[2]) + 
     1/2 (2 EulerGamma Log[2] - Log[2]^2)

For 3000 digit numeric approximation, it is

B=NSum[((-1)^(
    k + 1) (-1 + (1 + k)^(1/(1 + k)) - Log[1 + k]/(1 + k) - 
      Log[1 + k]^2/(2 (1 + k)^2))), {k, 0, Infinity}, 
  Method -> "AlternatingSigns", WorkingPrecision -> 3000] + 
 1/24 (\[Pi]^2 Log[2]^2 - 
    2 \[Pi]^2 Log[
      2] (EulerGamma + Log[2] - 12 Log[Glaisher] + Log[\[Pi]]) - 
    6 (Zeta^\[Prime]\[Prime])[2]) + 
 1/2 (2 EulerGamma Log[2] - Log[2]^2)

It is anylitaclly straight forward too because

Sum[(-1)^(k + 1)*Log[1 + k]^2/(2 (1 + k)^2), {k, 0, Infinity}]

gives

1/24 (-\[Pi]^2 (Log[2]^2 + EulerGamma Log[4] - 
      24 Log[2] Log[Glaisher] + Log[4] Log[\[Pi]]) - 
   6 (Zeta^\[Prime]\[Prime])[2])

That is enter image description here I wonder why he chose it?

POSTED BY: Marvin Ray Burns

The identity in question is straightforward. Write n^(1/n) as Exp[Log[n]/n], take a series expansion at 0, and subtract the first term from all summands. That means subtracting off Log[n]/n in each summand. This gives your left hand side. We know it must be M - the sum of the terms we subtracted off. Now add all of them up, accounting for signs.

Expand[Sum[(-1)^n*Log[n]/n, {n, 1, Infinity}]]

(* Out[74]= EulerGamma Log[2] - Log[2]^2/2 *)

So we recover the right hand side.

I have not understood whether this identity helps with Crandall's iteration. One advantage it confers, a good one in general, is that it converts a conditionally convergent alternating series into one that is absolutely convergent. From a numerical computation point of view this is always good.

POSTED BY: Daniel Lichtblau

Jan 2015

How about computing the MRB constant from Crandall's eta derivative formulas?

They are mentioned in a previous post, but here they are again:

enter image description here

Upon reading them, Google OpenAI Chat CPT wrote the following reply:

enter image description here

I computed and checked 500 digits of the MRB constant, using the first eta derivative formula in 38.6 seconds. How well can you do? Can you improve my program? (It is a 51.4% improvement of one of Crandall's programs.) I want a little competition in some of these records! (That formula takes just 225 summands, compared to 10^501 summands using -1^(1/1)+2^(1/2)-3^(1/3)+... See http://arxiv.org/pdf/0912.3844v3.pdf for more summation requirements for other summation methods.)

In[37]:= mm = 
  0.187859642462067120248517934054273230055903094900138786172004684089\
4772315646602137032966544331074969038423458562580190612313700947592266\
3043892934889618412083733662608161360273812637937343528321255276396217\
1489321702076282062171516715408412680448363541671998519768025275989389\
9391445798350556135096485210712078444230958681294976885269495642042555\
8648367044104252795247106066609263397483410311578167864166891546003422\
2258838002545539689294711421221891050983287122773080200364452153905363\
9505533220347062755115981282803951021926491467317629351619065981601866\
4245824950697203381992958420935515162514399357600764593291281451709082\
4249158832041690664093344359148067055646928067870070281150093806069381\
3938595336065798740556206234870432936073781956460310476395066489306136\
0645528067515193508280837376719296866398103094949637496277383049846324\
5634793115753002892125232918161956269736970748657654760711780171957873\
6830096590226066875365630551656736128815020143875613668655221067430537\
0591039735756191489093690777983203551193362404637253494105428363699717\
0244185516548372793588220081344809610588020306478196195969537562878348\
1233497638586301014072725292301472333336250918584024803704048881967676\
7601198581116791693527968520441600270861372286889451015102919988536905\
7286592870868754254925337943953475897035633134403826388879866561959807\
3351473990256577813317226107612797585272274277730898577492230597096257\
2562718836755752978879253616876739403543214513627725492293131262764357\
3214462161877863771542054231282234462953965329033221714798202807598422\
1065564890048536858707083268874877377635047689160983185536281667159108\
4121934201643860002585084265564350069548328301205461932`1661.\
273833491444;

In[30]:= Timing[
 etaMM[m_, pr_] := 
  Module[{a, d, s, k, b, c}, a[j_] := Log[j + 1]^m/(j + 1)^m;
   n = Floor[1.32 pr];
   d = Cos[n ArcCos[3]];
   {b, c, s} = {-1, -d, 0};
   Do[c = b - c;
    s = s + c a[k];
    b = (k + n) (k - n) b/((k + 1) (k + 1/2)), {k, 0, n - 1}];
   N[s/d, pr] (-1)^m];
 eta[s_] := (1 - 2^(1 - s)) Zeta[s];
 eta1 = Limit[D[eta[s], s], s -> 1];
 MRBtrue = mm;
 prec = 500;
 MRBtest = 
  eta1 - Sum[(-1)^m etaMM[m, prec]/m!, {m, 2, Floor[.45 prec]}];
 MRBtest - MRBtrue]

Out[30]= {36.831836, 0.*10^-502}

Here is a short table of computation times with that program:

Digits      Seconds

500        36.831836
1000       717.308198
1500       2989.759165
2000       3752.354453

I just now retweaked the program. It is now

Timing[etaMM[m_, pr_] := 
  Module[{a, d, s, k, b, c}, 
   a[j_] := N[(-PolyLog[1, -j]/(j + 1))^m, pr];
   n = Floor[1.32 pr];
   d = Cos[n ArcCos[3]];
   {b, c, s} = {-1, -d, 0};
   Do[c = b - c;
    s = s + c a[k];
    b = N[(k + n) (k - n) b/((k + 1) (k + 1/2)), pr], {k, 0, n - 1}];
   Return[N[s/d, pr] (-1)^m]];
 eta[s_] := (1 - 2^(1 - s)) Zeta[s];
 eta1 = Limit[D[eta[s], s], s -> 1];
 MRBtrue = mm;
 prec = 1500;
 MRBtest = 
  eta1 - Sum[(-1)^m etaMM[m, prec]/Gamma[m + 1], {m, 2, 
     Floor[.45 prec]}, Method -> "Procedural"];
 MRBtest - MRBtrue]

Feb 2015

Here are my best eta derivative records:

Digits        Seconds
 500          9.874863
 1000        62.587601
 1500        219.41540
 2000       1008.842867
 2500       2659.208646
 3000       5552.902395
 3500       10233.821601

That is using V10.0.2.0 Kernel. Here is a sample

Timing[etaMM[m_, pr_] := 
          Module[{a, d, s, k, b, c}, 
           a[j_] := N[(-PolyLog[1, -j]/(j + 1))^m, pr];
           n = Floor[1.32 pr];
           d = Cos[n ArcCos[3]];
           {b, c, s} = {-1, -d, 0};
           Do[c = b - c;
            s = s + c a[k];
            b = N[(k + n) (k - n) b/((k + 1) (k + 1/2)), pr], {k, 0, n - 1}];
           Return[N[s/d, pr] (-1)^m]];
         eta[s_] := (1 - 2^(1 - s)) Zeta[s];
         eta1 = Limit[D[eta[s], s], s -> 1];
         MRBtrue = mm;
         prec = 500;
         MRBtest = 
          eta1 - Sum[(-1)^m etaMM[m, prec]/Gamma[m + 1], {m, 2, 
             Floor[.45 prec]}];
        ]
         N::meprec: Internal precision limit $MaxExtraPrecision = 50. reached while evaluating 
             -Cos[660 ArcCos[3]].

         N::meprec: Internal precision limit $MaxExtraPrecision = 50. reached while evaluating 
             -Cos[660 ArcCos[3]].

         N::meprec: Internal precision limit $MaxExtraPrecision = 50. reached while evaluating 
             -Cos[660 ArcCos[3]].

         General::stop: Further output of N::meprec will be suppressed during this calculation.

         Out[1]= {9.874863, Null}

Aug 2016

enter image description here

V 11 has a significant improvement in my new most recently mentioned fastest program for calculating digits of the MRB constant via the eta formula, Here are some timings:

Digits           seconds

1500                42.6386632

2000             127.3101969

3000             530.4442911

4000           1860.1966540

5000           3875.6978162

6000           8596.9347275



 10,000        53667.6315476

From an previous message that starts with "How about computing the MRB constant from Crandall's eta derivative formulas?" here are my first two sets of records to compare with the just mentioned ones. You can see that I increased time efficiency by 10 to 29 to even 72 fold for select computations! In the tests used in that "previous message," 4000 or more digit computations produced a seemingly indefinitely long hang-on.

Digits      Seconds

500        36.831836
1000       717.308198
1500       2989.759165
2000       3752.354453


Digits        Seconds
 500          9.874863
 1000        62.587601
 1500        219.41540
 2000       1008.842867
 2500       2659.208646
 3000       5552.902395
 3500       10233.821601

Comparing first of the just mentioned 2000 digit computations with the "significant improvement" one we get the following.

3752/127 ~=29.

And from the slowest to the fastest 1500 digit run we get

2989/42 ~=72,

POSTED BY: Marvin Ray Burns

02/12/2019

Using my 2 nodes of the MRB constant supercomputer (3.7 GH overclocked up to 4.7 GH, Intel 6core, 3000MH RAM,and 4 cores from my 3.6 GH, 2400MH RAM) I computed 34,517 digits of the MRB constant using Crandall's first eta formula:

prec = 35000;
to = SessionTime[];
etaMM[m_, pr_] := 
  Block[{a, s, k, b, c}, 
   a[j_] := (SetPrecision[Log[j + 1], prec]/(j + 1))^m;
   {b, c, s} = {-1, -d, 0};
   Do[c = b - c;
    s = s + c a[k];
    b = (k + n) (k - n) b/((k + 1) (k + 1/2)), {k, 0, n - 1}];
   Return[N[s/d, pr] (-1)^m]];
eta1 = N[EulerGamma Log[2] - Log[2]^2/2, prec]; n = 
 Floor[132/100 prec]; d = N[ChebyshevT[n, 3], prec];
MRBtest = 
  eta1 - Total[
    ParallelCombine[((Cos[Pi #]) etaMM[#, prec]/
         N[Gamma[# + 1], prec]) &, Range[2, Floor[.250 prec]], 
     Method -> "CoarsestGrained"]];
Print[N[MRBtest2 - MRBtest,10]];

SessionTime[] - to

giving -2.166803252*10^-34517 for a difference and 208659.2864422 seconds or 2.415 days for a timing.

Where MRBtest2 is 36000 digits computed through acceleration methods of n^(1/n)

3/28/2019

Here is an updated table of speed eta formula records: eta records 12 31 18

04/03/2019

Using my 2 nodes of the MRB constant supercomputer (3.7 GH overclocked up to 4.7 GH, Intel 6core, 3000MH RAM,and 4 cores from my 3.6 GH, 2400MH RAM) I computed 50,000 digits of the MRB constant using Crandall's first eta formula in 5.79 days.

 prec = 50000;
to = SessionTime[];
etaMM[m_, pr_] := 
  Module[{a, s, k, b, c}, 
   a[j_] := 
    SetPrecision[SetPrecision[Log[j + 1]/(j + 1), prec]^m, prec];
   {b, c, s} = {-1, -d, 0};
   Do[c = b - c;
    s = s + c a[k];
    b = (k + n) (k - n) b/((k + 1) (k + 1/2)), {k, 0, n - 1}];
   Return[N[s/d, pr] (-1)^m]];
eta1 = N[EulerGamma Log[2] - Log[2]^2/2, prec]; n = 
 Floor[132/100 prec]; d = N[ChebyshevT[n, 3], prec];
MRBtest = 
  eta1 - Total[
    ParallelCombine[((Cos[Pi #]) etaMM[#, prec]/
         N[Gamma[# + 1], prec]) &, Range[2, Floor[.245 prec]], 
     Method -> "CoarsestGrained"]];
Print[N[MRBtest2 - MRBtest, 10]];

SessionTime[] - to

 (* 0.*10^-50000

  500808.4835750*)
POSTED BY: Marvin Ray Burns

4/22/2019

Let $$M=\sum _{n=1}^{\infty } \frac{(-1)^{n+1} \eta ^n(n)}{n!}=\sum _{n=1}^{\infty } (-1)^n \left(n^{1/n}-1\right).$$ Then using what I learned about the absolute convergence of $\sum _{n=1}^{\infty } \frac{(-1)^{n+1} \eta ^n(n)}{n!}$ from https://math.stackexchange.com/questions/1673886/is-there-a-more-rigorous-way-to-show-these-two-sums-are-exactly-equal, combined with an identity from Richard Crandall: enter image description here, Also using what Mathematica says:

$$\sum _{n=1}^1 \frac{\underset{m\to 1}{\text{lim}} \eta ^n(m)}{n!}=\gamma (2 \log )-\frac{2 \log ^2}{2},$$

I figured out that

$$\sum _{n=2}^{\infty } \frac{(-1)^{n+1} \eta ^n(n)}{n!}=\sum _{n=1}^{\infty } (-1)^n \left(n^{1/n}-\frac{\log (n)}{n}-1\right).$$

So I made the following major breakthrough in computing MRB from Candall's first eta formula. See attached 100 k eta 4 22 2019. Also shown below.

eta 18 to19 n 2.JPG

The time grows 10,000 times slower than the previous method!

I broke a new record, 100,000 digits: Processor and total time were 806.5 and 2606.7281972 s respectively.. See attached 2nd 100 k eta 4 22 2019.

Here is the work from 100,000 digits. enter image description here

Print["Start time is ", ds = DateString[], "."];
prec = 100000;
(**Number of required decimals.*.*)ClearSystemCache[];
T0 = SessionTime[];
expM[pre_] := 
  Module[{a, d, s, k, bb, c, end, iprec, xvals, x, pc, cores = 16(*=4*
    number of physical cores*), tsize = 2^7, chunksize, start = 1, ll,
     ctab, pr = Floor[1.005 pre]}, chunksize = cores*tsize;
   n = Floor[1.32 pr];
   end = Ceiling[n/chunksize];
   Print["Iterations required: ", n];
   Print["Will give ", end, 
    " time estimates, each more accurate than the previous."];
   Print["Will stop at ", end*chunksize, 
    " iterations to ensure precsion of around ", pr, 
    " decimal places."]; d = ChebyshevT[n, 3];
   {b, c, s} = {SetPrecision[-1, 1.1*n], -d, 0};
   iprec = Ceiling[pr/27];
   Do[xvals = Flatten[ParallelTable[Table[ll = start + j*tsize + l;
        x = N[E^(Log[ll]/(ll)), iprec];
        pc = iprec;
        While[pc < pr/4, pc = Min[3 pc, pr/4];
         x = SetPrecision[x, pc];
         y = x^ll - ll;
         x = x (1 - 2 y/((ll + 1) y + 2 ll ll));];(**N[Exp[Log[ll]/
        ll],pr/4]**)x = SetPrecision[x, pr];
        xll = x^ll; z = (ll - xll)/xll;
        t = 2 ll - 1; t2 = t^2;
        x = 
         x*(1 + SetPrecision[4.5, pr] (ll - 1)/
              t2 + (ll + 1) z/(2 ll t) - 
            SetPrecision[13.5, pr] ll (ll - 1) 1/(3 ll t2 + t^3 z));(**
        N[Exp[Log[ll]/ll],pr]**)x, {l, 0, tsize - 1}], {j, 0, 
        cores - 1}, Method -> "EvaluationsPerKernel" -> 32]];
    ctab = ParallelTable[Table[c = b - c;
       ll = start + l - 2;
       b *= 2 (ll + n) (ll - n)/((ll + 1) (2 ll + 1));
       c, {l, chunksize}], Method -> "EvaluationsPerKernel" -> 16];
    s += ctab.(xvals - 1);
    start += chunksize;
    st = SessionTime[] - T0; kc = k*chunksize;
    ti = (st)/(kc + 10^-4)*(n)/(3600)/(24);
    If[kc > 1, 
     Print[kc, " iterations done in ", N[st, 4], " seconds.", 
      " Should take ", N[ti, 4], " days or ", N[ti*24*3600, 4], 
      "s, finish ", DatePlus[ds, ti], "."]];, {k, 0, end - 1}];
   N[-s/d, pr]];
t2 = Timing[MRB = expM[prec];]; Print["Finished on ", 
 DateString[], ". Proccessor time was ", t2[[1]], " s."];
Print["Enter MRBtest2 to print ", Floor[Precision[MRBtest2]], 
  " digits"];


 (Start time is )^2Tue 23 Apr 2019 06:49:31.

 Iterations required: 132026

 Will give 65 time estimates, each more accurate than the previous.

 Will stop at 133120 iterations to ensure precsion of around 100020 decimal places.

 Denominator computed in  17.2324041s.

...

129024 iterations done in 1011. seconds. Should take 0.01203 days or 1040.s, finish Mon 22 Apr 
2019 12:59:16.

131072 iterations done in 1026. seconds. Should take 0.01202 days or 1038.s, finish Mon 22 Apr 
2019 12:59:15.

Finished on Mon 22 Apr 2019 12:59:03. Processor time was 786.797 s.

enter image description here

 Print["Start time is " "Start time is ", ds = DateString[], "."];
 prec = 100000;
 (**Number of required decimals.*.*)ClearSystemCache[];
 T0 = SessionTime[];
 expM[pre_] := 
   Module[{lg, a, d, s, k, bb, c, end, iprec, xvals, x, pc, cores = 16(*=
     4*number of physical cores*), tsize = 2^7, chunksize, start = 1, 
     ll, ctab, pr = Floor[1.0002 pre]}, chunksize = cores*tsize;
    n = Floor[1.32 pr];
    end = Ceiling[n/chunksize];
    Print["Iterations required: ", n];
    Print["Will give ", end, 
     " time estimates, each more accurate than the previous."];
    Print["Will stop at ", end*chunksize, 
     " iterations to ensure precsion of around ", pr, 
     " decimal places."]; d = ChebyshevT[n, 3];
    {b, c, s} = {SetPrecision[-1, 1.1*n], -d, 0};
    iprec = pr/2^6;
    Do[xvals = Flatten[ParallelTable[Table[ll = start + j*tsize + l;
         lg = Log[ll]/(ll); x = N[E^(lg), iprec];
         pc = iprec;
         While[pc < pr, pc = Min[4 pc, pr];
          x = SetPrecision[x, pc];
          xll = x^ll; z = (ll - xll)/xll;
          t = 2 ll - 1; t2 = t^2;
          x = 
           x*(1 + SetPrecision[4.5, pc] (ll - 1)/
                t2 + (ll + 1) z/(2 ll t) - 
              SetPrecision[13.5, 2 pc] ll (ll - 1)/(3 ll t2 + t^3 z))];
          x - lg, {l, 0, tsize - 1}], {j, 0, cores - 1}, 
        Method -> "EvaluationsPerKernel" -> 16]];
     ctab = ParallelTable[Table[c = b - c;
        ll = start + l - 2;
        b *= 2 (ll + n) (ll - n)/((ll + 1) (2 ll + 1));
        c, {l, chunksize}], Method -> "EvaluationsPerKernel" -> 16];
     s += ctab.(xvals - 1);
     start += chunksize;
     st = SessionTime[] - T0; kc = k*chunksize;
     ti = (st)/(kc + 10^-10)*(n)/(3600)/(24);
     If[kc > 1, 
      Print[kc, " iterations done in ", N[st - stt, 4], " seconds.", 
       " Should take ", N[ti, 4], " days or ", ti*3600*24, 
       "s, finish ", DatePlus[ds, ti], "."], 
      Print["Denominator computed in  ", stt = st, "s."]];, {k, 0, 
      end - 1}];
    N[-s/d, pr]];
 t2 = Timing[MRBeta2toinf = expM[prec];]; Print["Finished on ", 
  DateString[], ". Processor and total time were ", 
  t2[[1]], " and ", st, " s respectively."];

Start time is  Tue 23 Apr 2019 06:49:31.

Iterations required: 132026

Will give 65 time estimates, each more accurate than the previous.

Will stop at 133120 iterations to ensure precision of around 100020 decimal places.

Denominator computed in  17.2324041s.

...

131072 iterations done in 2589. seconds. Should take 0.03039 days or 2625.7011182s, finish Tue 23 Apr 2019 07:33:16.

Finished on Tue 23 Apr 2019 07:32:58. Processor and total time were 806.5 and 2606.7281972 s respectively.

enter image description here

 MRBeta1 = EulerGamma Log[2] - 1/2 Log[2]^2

 EulerGamma Log[2] - Log[2]^2/2

enter image description here

   N[MRBeta2toinf + MRBeta1 - MRB, 10]

   1.307089967*10^-99742
POSTED BY: Marvin Ray Burns

Richard Crandall might of had some help in developing his method. He wrote one time:

"Marvin I am working on a highly efficient method for your constant, and I've been in touch with other mathematics scholars.

Please be patient...

rec

Sent from my iPhone."

POSTED BY: Marvin Ray Burns

Crandall is not using his eta formulas directly!!!!!!! He computes Sum[(-1)^k*(k^(1/k) - 1), {k, 1, Infinity}] directly!

Going back to Crandall's code:

(*Fastest (at RC's end) as of 30 Nov 2012.*)prec = 500000;(*Number of \
required decimals.*)ClearSystemCache[];
T0 = SessionTime[];
expM[pre_] := 
  Module[{a, d, s, k, bb, c, n, end, iprec, xvals, x, pc, cores = 4, 
    tsize = 2^7, chunksize, start = 1, ll, ctab, 
    pr = Floor[1.02 pre]}, chunksize = cores*tsize;
   n = Floor[1.32 pr];
   end = Ceiling[n/chunksize];
   Print["Iterations required: ", n];
   Print["end ", end];
   Print[end*chunksize];
   d = N[(3 + Sqrt[8])^n, pr + 10];
   d = Round[1/2 (d + 1/d)];
   {b, c, s} = {SetPrecision[-1, 1.1*n], -d, 0};
   iprec = Ceiling[pr/27];
   Do[xvals = Flatten[ParallelTable[Table[ll = start + j*tsize + l;
        x = N[E^(Log[ll]/(ll)), iprec];
        pc = iprec;
        While[pc < pr, pc = Min[3 pc, pr];
         x = SetPrecision[x, pc];
         y = x^ll - ll;
         x = x (1 - 2 y/((ll + 1) y + 2 ll ll));];(*N[Exp[Log[ll]/ll],
        pr]*)x, {l, 0, tsize - 1}], {j, 0, cores - 1}, 
       Method -> "EvaluationsPerKernel" -> 1]];
    ctab = Table[c = b - c;
      ll = start + l - 2;
      b *= 2 (ll + n) (ll - n)/((ll + 1) (2 ll + 1));
      c, {l, chunksize}];
    s += ctab.(xvals - 1);
    start += chunksize;
    Print["done iter ", k*chunksize, " ", SessionTime[] - T0];, {k, 0,
      end - 1}];
   N[-s/d, pr]];

t2 = Timing[MRBtest2 = expM[prec];];
MRBtest2 - MRBtest3

x = N[E^(Log[ll]/(ll)), iprec]; Gives k^(1/k) to only Ceiling[pr/27]; decimal places; they are either 1.0, 1.1, 1.2, 1.3 or 1.4 (usually 1.1 or 1.0 for the first 27 desired decimals.) On the other hand,

While[pc < pr, pc = Min[3 pc, pr];
 x = SetPrecision[x, pc];
 y = x^ll - ll;
 x = x (1 - 2 y/((ll + 1) y + 2 ll ll));],

takes the short precision x and gives it the necessary precision and accuracy for k^(1/k) (k Is ll there.) It actually computes k^(1/k). Then he remarks, "(N[Exp[Log[ll]/ll], pr])."

After finding a fast way to compute k^(1/k) to necessary precision he uses Cohen's algorithm 1 (See a screenshot in a previous post.) to accelerate convergence of Sum[(-1)^k*(k^(1/k) - 1), {k, 1, Infinity}]. That is his secret!!

As I mentioned in a previous post the "MRBtest2 - MRBtest3" is for checking with a known-to-be accurate approximation to the MRB constant, MRBtest3

I'm just excited that I figured it out! as you can tell.

POSTED BY: Marvin Ray Burns

Nice work. Worth a bit of excitement, I' d say.

POSTED BY: Daniel Lichtblau

Daniel Lichtblau and others, Richard Crandall did intend to explian his work on the MRB constant and his program to compute it. When I wrote him with a possible small improvement to his program he said, "It's worth observing when we write it up." See screenshot: enter image description here

POSTED BY: Marvin Ray Burns

I can't say I understand either. My guess is the Eta stuff comes from summing (-1)^k*(Log[k]/k)^n over k, as those are the terms that appear in the double sum you get from expanding k^(1/k)-1 in powers of Log[k]/k (use k^(1/k)=Exp[Log[k]/k] and the power series for Exp). Even if it does come from this the details remain elusive..

POSTED BY: Daniel Lichtblau

What Richard Crandall and maybe others did to come up with that method is really good and somewhat mysterious. I still don't really understand the inner workings, and I had shown him how to parallelize it. So the best I can say is that it's really hard to compete against magic. (I don't want to discourage others, I'm just explaining why I myself would be reluctant to tackle this. Someone less familiar might actually have a better chance of breaking new ground.)

In a way this should be good news. Should it ever become "easy" to compute, the MRB number would lose what is perhaps its biggest point of interest. It just happens to be on that cusp of tantalizingly "close" to easily computable (perhaps as sums of zeta function and derivatives thereof), yet still hard enough that it takes a sophisticated scheme to get more than a few dozen digits.

POSTED BY: Daniel Lichtblau

It is hard to be certain that c1 and c2 are correct to 77 digits even though they agree to that extent. I'm not saying that they are incorrect and presumably you have verified this. Just claiming that whatever methods NSum may be using to accelerate convergence, there is really no guarantee that they apply to this particular computation. So c1 aand c2 could agree to that many places because they are computed in a similar manner without all digits actually being correct.

POSTED BY: Daniel Lichtblau
Reply to this discussion
Community posts can be styled and formatted using the Markdown syntax.
Reply Preview
Attachments
Remove
or Discard

Group Abstract Group Abstract