Hi,
I'm trying to compute the fixed point of a vector-valued function, here are the definitions I use:
Z1 = {0, 1, 2};
Y = {1, 0};
X = Tuples[{Z1,Y}];
\[Alpha]VP[0] = 0.5;
\[Alpha]VP[1] = 1.;
\[Beta] = 0.95;
Pr1m={{0.691462, 0.24173, 0.0668072}, {0.460172, 0.355768, 0.18406}, {0.241964, 0.375948, 0.382089}};
Pry1 = {{1., 0.}, {1., 0.}};
Pry0 = {{0., 1.}, {0., 1.}};
F1 = KroneckerProduct[Pr1m,Pry1];
F0 = KroneckerProduct[Pr1m,Pry0];
\[DoubledPi]m[z1_,y_] := (\[Alpha]VP[0] + \[Alpha]VP[1] z1) (1 - y)
v[z1_,y_] := Log[Exp[\[DoubledPi]m[z1, y] + \[Beta] F1. #] + Exp[\[Beta] F0. #]] &
fun = Apply[v] /@ X
FixedPoint[Apply[fun], ConstantArray[0., 6], SameTest -> (EuclideanDistance[#1, #2] < .001 &)]
I've been trying to get the final line to work, but have had no luck. Any help would be appreciated.