Message Boards Message Boards

0
|
1727 Views
|
0 Replies
|
0 Total Likes
View groups...
Share
Share this post:

Is random number generation based on Farlie-Gumbel-Morgenstern copula wrong

Posted 10 years ago

I am constructing a bivariate Farlie-Gumbel-Morgenstern distributions with Normal and exponential marginal as follows:

G = 1 - E^(-s \[Lambda]); 
Fe = CDF[NormalDistribution[\[Mu], \[Sigma]], \[Epsilon]];
He = Fe G (1 + 3 \[Rho] (1 - Fe) (1 - G));
h = FullSimplify[D[He, \[Epsilon], s]];

We can calculate conditional mean of \[Epsilon] given s as follows

condmean\[Epsilon] = 
 Assuming[{\[Lambda] > 0, -1/3 <= \[Rho] <= 1/3, \[Sigma] > 0}, \!\(
\*SubsuperscriptBox[\(\[Integral]\), \(-\[Infinity]\), \
\(\[Infinity]\)]\(\[Epsilon]\ \((h/
      Assuming[{\[Lambda] > 0, Abs[\[Rho]] <= 1/3, \[Sigma] > 0}, 
\*SubsuperscriptBox[\(\[Integral]\), \(-\[Infinity]\), \
\(\[Infinity]\)]h \[DifferentialD]\[Epsilon]])\)\ \[DifferentialD]\
\[Epsilon]\)\)];

My Answer is

  condmean\[Epsilon] =  \[Mu] + (3 E^(-s \[Lambda]) (-2 + E^(
        s \[Lambda])) \[Rho] \[Sigma])/Sqrt[\[Pi]];

Now I go and define following functions to generate random variables

FGM[\[Mu]_, \[Sigma]_, \[Rho]_, \[Lambda]_] := 
  Assuming[{\[Lambda] > 0, Abs[\[Rho]] <= 1/3, \[Sigma] > 0}, 
   CopulaDistribution[{"FGM", \[Rho]}, {NormalDistribution[\[Mu], \
\[Sigma]], ExponentialDistribution[\[Lambda]]}]];

Rv2[\[Mu]_, \[Sigma]_, \[Rho]_, \[Lambda]_, Nf_] := Module[{x},
  x = RandomVariate[FGM[\[Mu], \[Sigma], \[Rho], \[Lambda]], Nf];
  Table[{x[[i, 1]], x[[i, 2]]}, {i, 1, Nf}]

I fixed the parameters as follows:

\[Mu] = 0; 
\[Sigma] = .0236; 
\[Rho] = .2;
\[Lambda] = .006; 
 Nf = 10000;

I simulated data 1000 times and find mean of mean. I do not get the values close to each other. The values are three to four fold apart.

Finally, I write my own function to generate random numbers based on Devroye's (1986) free book "Non-uniform random variate generation" page 580-581 as follows:

fgm[\[Mu]_, \[Sigma]_, \[Rho]_, \[Lambda]_, nf_] := 
 Module[{d, U, V, lt, gt, Fx, Gy},
  d = 3*\[Rho];
  Fx = RandomReal[{0, 1}, nf] /. .5 -> .49999;
  U = RandomReal[{0, 1}, nf];
  V = RandomReal[{0, 1}, nf];
  vFx = -(V)/(Abs[d]*(2*Fx - 1));
      lt = # < .5 & /@ Fx   /. {True -> 1, False -> 0};
  pos[x_] := (# > 0 & /@   x  /. {True -> 1, False -> 0})*x;
  min[a_, b_] := b - pos[b - a];
  max[a_, b_] := a + pos[b - a];
  Gy = lt*min[U, vFx] + (1 - lt)*max[U, 1 + vFx];
  Gy = If[\[Rho] < 0, (1 - Gy), Gy];
  (* Fx and Gy are correlated uniform random variates *)
  (* desired distribution is done through inverse lookup *)
  e = InverseCDF[NormalDistribution[\[Mu], \[Sigma]], Fx]; (* 
  normal variate *)
  gt = # >= 1 & /@ Gy   /. {True -> 1, False -> 0};
  s = -Log[1 - gt*.999999 - (1 - gt)*Gy]/\[Lambda];
  (* Exponential Variate *)

  fgmout = Transpose[{e, s}];
     fgmout
  ]

Again I use the above function to generate data and find the mean as above. This time I get pretty close results for simulated data and my theoretical mean.

Finally my question: Is random number generation based on Mathematica's Farlie-Gumbel-Morgenstern copula correct? or I am doing something stupid.

Any help is greatly appreciated.

POSTED BY: Ramesh Adhikari
Reply to this discussion
Community posts can be styled and formatted using the Markdown syntax.
Reply Preview
Attachments
Remove
or Discard

Group Abstract Group Abstract