Following is a solution of the problem. It requires calculus and some knowledge of Mathematica programming.
In[1]:= g = 9.81;
In[2]:= (* m value is arbitrary! *)
In[3]:= (* components of initial velocity *)
In[4]:= (* x'[0]=250 Cos[53\[Degree]] *)
In[5]:= (* y'[0]=250 Sin[53 \[Degree]] *)
In[6]:= (* x-motion at constant velocity *)
In[7]:= x[t_] := 250 Cos[53 \[Degree]] t
In[8]:= (*Newton's law for y-motion m y''[t]=-m g*)
In[9]:= DSolve[{m y''[t] == -m g, y[0] == 0,
y'[0] == 250 Sin[53 \[Degree]]}, y[t], t]
Out[9]= {{y[t] -> 199.659 t - 4.905 t^2}}
In[10]:= y[t_] := 1/2 (-g t^2 + 500 t Cos[37 \[Degree]])
In[11]:= Solve[y[t] == 0, t]
Out[11]= {{t -> 0. + 0. I}, {t -> 40.7052}}
In[12]:= ParametricPlot[{x[t], y[t]}, {t, 0, 40.7052}]
Output is plot of parabola