Message Boards Message Boards

1
|
2204 Views
|
0 Replies
|
1 Total Likes
View groups...
Share
Share this post:
GROUPS:

New breakthrough in understanding (numerically) the MRB constant

Here is my latest attempt to find a super-fast method of computing the MRB constat as of 11/18/2014. (I still have a ways to go.) See http://community.wolfram.com/groups/-/m/t/366628?p_p_auth=90Hj0Sid for my attempts at computing it. The notebook is attached so you can copy and edit it.

enter image description here

enter image description here

enter image description here

Reconstruct and greatly expand the above RootApproximant's (here f) and find they are approximated well by certain
 ((1+Sqrt[2])^n+(1-Sqrt[2])^n)/2.

Clear[key, f]

Block[{$MaxExtraPrecision = 1000}, For[x = 1, x <= 48,
        key[x] = Table[Convergents[Sqrt[2], 100][[2 n]], {n, 50}][[-x]];
        f[x] = Numerator[key[x]] - Denominator[key[x]] Sqrt[2];              
  Print[N[((1 + Sqrt[2])^n + (1 - Sqrt[2])^n)/2 /. n -> 100 + 2 (x - 1), 
     120 + x] - N[f[x], 120 + x]*ChebyshevT[100, 3]];
  x++]]


2.6387695903457195648070395905136485002528815*10^-39

4.527412857479332018505153596026307976091567*10^-40

7.767812414187964629605256710213628540205842*10^-41

1.332745910334467592580004301018691480319384*10^-41

2.28663047818840925874769095898520341710461*10^-42

3.9232376578577962668610274372430569943380*10^-43

6.7312116526268501368925503360630779498198*10^-44

1.1548933371831381527450276439478977555385*10^-44

1.981483704719787795776155276243085834114*10^-45

3.39968856487345247206655217979537449296*10^-46

5.83294342042836874637760316341388616634*10^-47

1.00077487383568775760009718252957206843*10^-47

1.7170582258575779922297993176354624423*10^-48

2.946006167885903773778240805170539698*10^-49

5.054547487396427203714516546686137636*10^-50

8.67223245519525484504691228411428839*10^-51

1.48791985720725703313630823782435395*10^-51

2.5528668804828735377093714283183531*10^-52

4.380027108246708948931461916665789*10^-53

7.514938446515183164950572168112005*10^-54

1.289359596624009500388813842014146*10^-54

2.21219133228873837382310883972869*10^-55

3.7955202749233523905051461823070*10^-56

6.5120832665273060479978869655528*10^-57

1.1172968499303123829358599702467*10^-57

1.916978330545682496172728559273*10^-58

3.28901483970971147677771653172*10^-59

5.64305732801443898939013597563*10^-60

9.6819557098951916856365053661*10^-61

1.6611609792267602199176724406*10^-61

2.850101654653696338695292773*10^-62

4.89000135654575832995032232*10^-63

8.38991592737586592749006203*10^-64

1.43948199879761226543714897*10^-64

2.4697606540980766513283182*10^-65

4.237439366123372535984192*10^-66

7.270296557594687026219692*10^-67

1.247385684334396797476231*10^-67

2.14017548411693758637696*10^-68

3.6719606135765754349947*10^-69

6.3000884029007674619849*10^-70

1.0809242816388504219628*10^-70

1.854572869323350697919*10^-71

3.18194399551599967885*10^-72

5.45935279862491093918*10^-73

9.3667683658946884656*10^-74

1.6070822091190214020*10^-74

2.757248888194399464*10^-75
Attachments:
POSTED BY: Marvin Ray Burns
Reply to this discussion
Community posts can be styled and formatted using the Markdown syntax.
Reply Preview
Attachments
Remove
or Discard

Group Abstract Group Abstract