I have a long code for a ListLinePlot in its own cell. I have this code in two notebooks. In one of them the code displays correctly the AxesOrigin at {0.0,0.0}. In the other it is not doing it correctly but rather it is displaying the "important area" what it thinks is important. I am executing both notebooks on the same machine in the same session and I changed their execution order with no change in behavior. I re-copied the "good" code into the "bad" notebook, but the behavior remained the same. The only difference that the two notebooks work with different set of data, where the number of datapoints are the same, but the values are different. Very strange. I quite kernels, quit Frontend, but the behavior of ListLinePlot remains the same, one notebook shows correctly the AxesOrigin, the same code in the other notebook does not. I attache two pictures showing the output in the two notebook.
ListLinePlot[{{{mas100*pixelScale/1000.,
mofmpsannuli100Limit[[
First[First[
Position[mofmpsannuli200Limit,
Max[mofmpsannuli200Limit] ] ] ]]]}, {mas200*pixelScale/1000.,
mofmpsannuli200Limit[[
First[First[
Position[mofmpsannuli200Limit,
Max[mofmpsannuli200Limit] ] ] ]]]}, {mas400*pixelScale/1000.,
mofmpsannuli400Limit[[
First[First[
Position[mofmpsannuli200Limit,
Max[mofmpsannuli200Limit] ] ] ]]]}, {mas600*pixelScale/1000.,
mofmpsannuli600Limit[[
First[First[
Position[mofmpsannuli200Limit,
Max[mofmpsannuli200Limit] ] ] ]]]}, {mas800*pixelScale/1000.,
mofmpsannuli800Limit[[
First[First[
Position[mofmpsannuli200Limit,
Max[mofmpsannuli200Limit] ] ] ]]]}, {mas1000*pixelScale/1000,
mofmpsannuli1000Limit[[
First[First[
Position[mofmpsannuli200Limit,
Max[mofmpsannuli200Limit] ] ] ]]]}}, {{mas100*
pixelScale/1000.,
mofmpsannuli100Limit[[
First[First[
Position[mofmpsannuli800Limit,
Max[mofmpsannuli800Limit] ] ] ]]]}, {mas200*pixelScale/1000.,
mofmpsannuli200Limit[[
First[First[
Position[mofmpsannuli800Limit,
Max[mofmpsannuli800Limit] ] ] ]]]}, {mas400*pixelScale/1000.,
mofmpsannuli400Limit[[
First[First[
Position[mofmpsannuli800Limit,
Max[mofmpsannuli800Limit] ] ] ]]]}, {mas600*pixelScale/1000.,
mofmpsannuli600Limit[[
First[First[
Position[mofmpsannuli800Limit,
Max[mofmpsannuli800Limit] ] ] ]]]}, {mas800*pixelScale/1000.,
mofmpsannuli800Limit[[
First[First[
Position[mofmpsannuli800Limit,
Max[mofmpsannuli800Limit] ] ] ]]]}, {mas1000*pixelScale/1000,
mofmpsannuli1000Limit[[
First[First[
Position[mofmpsannuli800Limit,
Max[mofmpsannuli800Limit] ] ] ]]]}}, {{mas100*
pixelScale/1000.,
mofmpsannuli100Limit[[33]]}, {mas200*pixelScale/1000.,
mofmpsannuli200Limit[[33]]}, {mas400*pixelScale/1000.,
mofmpsannuli400Limit[[33]]}, {mas600*pixelScale/1000.,
mofmpsannuli600Limit[[33]]}, {mas800*pixelScale/1000.,
mofmpsannuli800Limit[[33]]}, {mas1000*pixelScale/1000,
mofmpsannuli1000Limit[[33]]}}, {{mas100*pixelScale/1000., -2.5*
Log10[Mean[annuli100pFull[[All, 3]] ] +
5*If[Length[annuli100pFull] > 1,
StandardDeviation[annuli100pFull[[All, 3]] ],
0 ]]}, {mas200*pixelScale/1000., -2.5*
Log10[Mean[annuli200pFull[[All, 3]] ] +
5*If[Length[annuli200pFull] > 1,
StandardDeviation[annuli200pFull[[All, 3]] ],
0 ]]}, {mas400*pixelScale/1000., -2.5*
Log10[Mean[annuli400pFull[[All, 3]] ] +
5*If[Length[annuli400pFull] > 1,
StandardDeviation[annuli400pFull[[All, 3]] ],
0 ]]}, {mas600*pixelScale/1000., -2.5*
Log10[Mean[annuli600pFull[[All, 3]] ] +
5*If[Length[annuli600pFull] > 1,
StandardDeviation[annuli600pFull[[All, 3]] ],
0 ]]}, {mas800*pixelScale/1000., -2.5*
Log10[Mean[annuli800pFull[[All, 3]] ] +
5*If[Length[annuli800pFull] > 1,
StandardDeviation[annuli800pFull[[All, 3]] ],
0 ]]}, {mas1000*pixelScale/1000, -2.5*
Log10[Mean[annuli1000pFull[[All, 3]] ] +
5*If[Length[annuli1000pFull] > 1,
StandardDeviation[annuli1000pFull[[All, 3]] ], 0 ]]}}}, AxesOrigin -> {0.0, 0.0}, AxesLabel -> {Style["Separation from\ncentral star in [arcsec]",
16], Style["Magnitude \ndifference", 16]}, PlotRange -> All, PlotLabel -> Style["Best Non-detection limit lines with sub-stacks\n at 0.2 \ arcsec and 0.8 arcsec separations from the central star.\n The whole \ stack limit line is also shown\n and the line of the one closest to \ Shannon entropy. \nThe corresponding Rényi alphas are at the Legends",
16], PlotLegends -> Placed[{ToString[
0.2 -> Flatten[
Position[mofmpsannuli200Limit, Max[mofmpsannuli200Limit] ],
1 ] *0.03 + 0.001],
ToString[
0.8 -> Flatten[
Position[mofmpsannuli800Limit, Max[mofmpsannuli800Limit] ],
1 ] *0.03 + 0.001], "Closest \nto Shannon->{0.991}",
"Full Stack"}, Right], PlotMarkers -> {Automatic, 10}, ImageSize -> Large]
Data in first case is:
{{{0.1, 3.1062}, {0.2, 3.42768}, {0.4, 4.13888}, {0.6, 4.47292}, {0.8, 5.04849}, {1., 5.10432}}, {{0.1, 3.17095}, {0.2, 3.29951}, {0.4, 4.08047}, {0.6, 4.47439}, {0.8, 5.11025}, {1., 5.21767}}, {{0.1, 3.20472}, {0.2, 3.28093}, {0.4, 4.23267}, {0.6, 4.50382}, {0.8, 5.06543}, {1., 5.23638}}, {{0.1, 3.88258}, {0.2, 3.48576}, {0.4, 4.22446}, {0.6, 4.58601}, {0.8, 5.07973}, {1., 5.13166}}}
In the second case:
{{{0.1, 3.1062}, {0.2, 3.42768}, {0.4, 4.13888}, {0.6, 4.47292}, {0.8, 5.04849}, {1., 5.10432}}, {{0.1, 3.17095}, {0.2, 3.29951}, {0.4, 4.08047}, {0.6, 4.47439}, {0.8, 5.11025}, {1., 5.21767}}, {{0.1, 3.20472}, {0.2, 3.28093}, {0.4, 4.23267}, {0.6, 4.50382}, {0.8, 5.06543}, {1., 5.23638}}, {{0.1, 3.88258}, {0.2, 3.48576}, {0.4, 4.22446}, {0.6, 4.58601}, {0.8, 5.07973}, {1., 5.13166}}}
Attachments: