Hello,
There is probably a clever way to do this by looking at the limits as
$t_{init}\rightarrow 0$, but this will give you a visual clue about the behavior:
Clear[nsol]
nsol[init_ ] :=
y /. NDSolve[{y''[x] + (2/x) y'[x] + g[y[x], 2, 2, 3] == 0,
y[init] == 2, y'[init] == 0}, y, {x, init, 2}][[1]]
Manipulate[
Plot[nsol[init][t], {t, init, 2}, PlotRange -> {{0, 2}, All}], {init,
0.0001, .1}]
or,
nsol2[eps_ ] :=
y /. NDSolve[{ y''[x] + (2/(x + eps)) y'[x] + g[y[x], 2, 2, 3] == 0,
y[0] == 2, y'[0] == 0}, y, {x, 0, 2}][[1]]
Manipulate[
Plot[nsol2[eps][t], {t, 0, 2},
PlotRange -> {{0, 2}, All}], {{eps, 0.01}, .0001, .1}]