The 1.0 coefficients can be changed to exact 1's in a variety of ways. A simple method is with Rationalize. 
In[1]:= expr = (-0.5 Cos[1. (-3. + 1. a + 1. c - 1. d) pi] +                            
             0.5 Cos[1. (-3. + 1. a - 1. c + 1. d) pi])/((-3. + 1. a) (c -  1. d) pi^2); 
In[2]:= rexpr = Rationalize[expr]                                                       
        -Cos[(-3 + a + c - d) pi]   Cos[(-3 + a - c + d) pi]
        ------------------------- + ------------------------
                    2                          2
Out[2]= ----------------------------------------------------
                                           2
                        (-3 + a) (c - d) pi 
In[3]:= Together[%]                                                                     
        -Cos[(-3 + a + c - d) pi] + Cos[(-3 + a - c + d) pi]
Out[3]= ----------------------------------------------------
                                            2
                       2 (-3 + a) (c - d) pi
If by "pi", you mean 3.14159..., this can be simplified further. 
In[4]:= FullSimplify[rexpr /. pi -> Pi, Element[{a, c, d}, Reals] ]                     
          Sin[a Pi] Sin[(c - d) Pi]
Out[4]= -(-------------------------)
                               2
            (-3 + a) (c - d) Pi
where 
In[5]:= ? /.      
expr /.rules applies a rule or list of rules in an attempt to transform each subpart of
     an expression expr. 
In[6]:= ? ->    
lhs -> rhs represents a rule that transforms lhs to rhs.