Quick answer:
Evaluate @ Table[
Sin[l] Piecewise[{
{250, 0 < l < ArcCos[(d^2 + 75)/(20 d)]},
{2500/Sqrt[100 + d^2 - 20 d Cos[l]] - 250, l > ArcCos[(d^2 + 75)/(20 d)]}}],
{d, 5, 15, 2}]
Basic answer:
Plot[ Evaluate@ Table[Sin[ l] Piecewise[{{250, 0 < l < ArcCos[(d^2 + 75)/(20 d)]}, {2500/ Sqrt[100 + d^2 - 20 d Cos[l]] - 250,
l > ArcCos[(d^2 + 75)/(20 d)]}}], {d, 5, 15, 2}],
{l, 0, Pi/2},
PlotRange -> All, ImageSize -> 800, Axes -> False, Frame -> True,
FrameTicks -> {{Automatic, Automatic}, {Range[0, Pi/2, Pi/12], Automatic}},
GridLines -> {Table[ArcCos[(d^2 + 75.)/(20 d)], {d, 5, 15, 2}], {}}, PlotStyle -> Thick, BaseStyle -> 18]
Extended answer:
Plot[ Evaluate@Table[ Sin[l] Piecewise[{ {250, 0 < l < ArcCos[(d^2 + 75)/(20 d)]},
{2500/Sqrt[100 + d^2 - 20 d Cos[l]] - 250, l > ArcCos[(d^2 + 75)/(20 d)]}}], {d, 5, 15, 2}],
{l, 0, 2 Pi},
PlotRange -> All, ImageSize -> 800, Axes -> False, Frame -> True,
FrameTicks -> {{Automatic, Automatic}, {Range[0, 2 Pi, Pi/2], None}},
PlotStyle -> Thick, BaseStyle -> 18
] // Show[#, Epilog -> { {EdgeForm@Dashed, FaceForm@None, Rectangle[{0, 0}, {Pi/4, 140}]},
Inset[
Show[#, PlotRange -> {{0, Pi/4}, {0, 140}}, ImageSize -> 250,
FrameTicks -> {{Automatic, Automatic}, {Range[0, Pi/4, Pi/12],
None}},
GridLines -> {Table[
ArcCos[(d^2 + 75)/(20 d)], {d, 5, 15, 2}], {}}],
ImageScaled[{.65, .3}]]
}] &