# Solving an optimization problem with exponent and constraints

Posted 8 years ago
5568 Views
|
|
0 Total Likes
|
 Any Ideas how to solve the equation? Mathematica doesn't solve it. The Original maximization problem was: FullSimplify[D[(1-(g-(Subscript[p, b](s(1+u)-x)+k)/((Subscript[p, b]-Subscript[p, a])(s*(1+u)-x)-2k))?)(-g+(pb(s(1+u)-x)+k)),g]] I don't' know how to put the constraints, but they areSubscript[p, b] between 0-1Subscript[p, a] between 0-1When I try to solve it, it doesn't solve:Input:  FullSimplify[Solve[-1 - ?*(-g + k + (s + s*u - x)*Subscript[p, b])*(g + (k + (s + s*u - x)*Subscript[p, b])/(2*k + (s + s*u - x)*(Subscript[p, a] - Subscript[p, b])))^(-1 + ?) + (g + (k + (s + s*u - x)*Subscript[p, b])/(2*k + (s + s*u - x)*(Subscript[p, a] - Subscript[p, b])))^? == 0, g]] Output:  Solve[(g + (k + (s + s*u - x)*Subscript[p, b])/(2*k + (s + s*u - x)*(Subscript[p, a] - Subscript[p, b])))^? == 1 + ?*(-g + k + (s + s*u - x)*Subscript[p, b])*(g + (k + (s + s*u - x)*Subscript[p, b])/(2*k + (s + s*u - x)*(Subscript[p, a] - Subscript[p, b])))^(-1 + ?), g]