Want to solve eqn
a =.; b =.; c =.; e =.;
Solve[3 + 4 a + 4 a^2 + 4 b + 4 b^2 + 4 c + 4 c^2 ==
3 (1 + 4 e + 4 e^2), {a, b, c, e}, Integers]
output gives 2 conditions
{{e -> ConditionalExpression[-(1/2) - Sqrt[
3 + 4 a + 4 a^2 + 4 b + 4 b^2 + 4 c + 4 c^2]/(
2 Sqrt[3]), ((a | b | c | e) \[Element] Integers &&
a >= 0) || ((a | b | c | e) \[Element] Integers &&
a <= -1)]}, {e ->
ConditionalExpression[-(1/2) + Sqrt[
3 + 4 a + 4 a^2 + 4 b + 4 b^2 + 4 c + 4 c^2]/(
2 Sqrt[3]), ((a | b | c | e) \[Element] Integers &&
a >= 0) || ((a | b | c | e) \[Element] Integers && a <= -1)]}}
when I consider the case where e is an odd integer
a =.; b =.; c =.; e =.;
FindInstance[
e == -(1/2) + Sqrt[3 + 4 a + 4 a^2 + 4 b + 4 b^2 + 4 c + 4 c^2]/(
2 Sqrt[3]) && Mod[e, 2] == 1 && a <= -1, {a, b, c, e}, Integers]
I get strange output
{{a -> {{-2, 0, 0, 0}} + {0, 1, 1, 1},
b -> {{-2, 0, 0, 0}} + {0, 1, 1, 1},
c -> {{-2, 0, 0, 0}} + {0, 1, 1, 1},
e -> {{-2, 0, 0, 0}} + {0, 1, 1, 1}}}
What does this mean? How do you interpret the output? Any comments appreciated.