Group Abstract Group Abstract

Message Boards Message Boards

0
|
5.4K Views
|
0 Replies
|
0 Total Likes
View groups...
Share
Share this post:

Surface Area of a Parametric Surface: Calc 3 Mathematica Help

Posted 11 years ago
  1. The function

    r(u,v)=x(u,v)Subscript[e, 1]+y(u,v)Subscript[e, 2]+[2x(u,v)^2-y(u,v)^2]Subscript[e, 3], 
    x(u,v)=2u cos v, y(u,v)=3u sin v, 0<=u<=1/2, 0<=v<=2\[Pi]
    

parametrizes the part of the hyperbolic paraboloid z=2x^2-y^2 with (x,y) restricted to the ellipse x^2/4+y^2/9<=1/4.

1.A. Use formula (1) and Mathematica's built-in command Integrate[] to calculate the surface area of [CapitalSigma]. 1.B. Use the module SurfaceAreaApproximation[] to approximate the surface area of [CapitalSigma] using 36 parallelograms. 1.C. Use the module SurfaceAreaApproximation[] to approximate the surface area of [CapitalSigma] to within 0.5. How many parallelograms did you use?

  1. The function

    r(u,v)=x(u,v)Subscript[e, 1]+y(u,v)Subscript[e, 2]+2exp[-2 x(u,v)^2-2y(u,v)^2]Subscript[e, 3],  
    x(u,v)=u cos v, y(u,v)=u sin v, 0<=u<=1, 0<=v<=2\[Pi]
    

parametrizes the part of the graph of the function z=2e^(-2 x^2-2y^2) with (x,y) restricted to the circle x^2+y^2<=1.

2.A. Use formula (1) and Mathematica's built-in command Integrate[] to calculate the surface area of [CapitalSigma]. 2.B. Use the module SurfaceAreaApproximation[] to approximate the surface area of [CapitalSigma] using 36 parallelograms. 2.C. Use the module SurfaceAreaApproximation[] to approximate the surface area of [CapitalSigma] to within 0.5. How many parallelograms did you use?

I am confused as to what values to use in this module for r and i

P = Table[ Point[r[-1 + (i 2)/5, -(\[Pi]/2) + (j \[Pi])/5]], {i, 0, 5}, {j, 0,5}];
B = Graphics3D[{AbsolutePointSize[7], RGBColor[0, 0, 0], P},  Axes -> False, Boxed -> False];SS = Show[A, B]
Reply to this discussion
Community posts can be styled and formatted using the Markdown syntax.
Reply Preview
Attachments
Remove
or Discard
Be respectful. Review our Community Guidelines to understand your role and responsibilities. Community Terms of Use