Message Boards Message Boards

3 Replies
0 Total Likes
View groups...
Share this post:

SphericalPlot3D Manipulate

Posted 9 years ago
a = ((3.14*.005) (1.887 - 1.792))/((.000522)*
     Cos[-.7454*Sin[\[Theta]]*Cos[\[Phi]] + .6626*Cos[\[Theta]]]);
b = (1 - Cos[.7454*Sin[\[Theta]]*Cos[\[Phi]] + .6626*
         Cos[\[Theta]]]^2)*(1 - 
      Cos[-.7454*Sin[\[Theta]]*Cos[\[Phi]] + .6626*Cos[\[Theta]]])^2;
c = a*b;
d = (Cos[c])^2;
SphericalPlot3D[d, {\[Theta], 0, \[Pi]}, { \[Phi], 0, 2*\[Pi]}]

I have spherical 3D plot of some functions. Is there a way that I can manipulate this plot so that I vary theta from 0, pi/4 while I hold phi constant in the plot? Thank you in advance.

POSTED BY: sean roubion
3 Replies
Posted 9 years ago

SphericalPlot3D Manipulate

POSTED BY: Hans Milton
Posted 9 years ago

Just to be clear, since there are more than one convention: In SphericalPlot3D the first angle argument is the "latitudinal" angle. And the second angle argument is the "longitudinal" angle. In the SphericalPlot3D case, the Mathematica documentation does not follow the most common uses of the greek letters theta and phi.

f[\[Theta]_, \[Phi]_] := Module[
    {a, b, c, d},
    a = ((3.14*.005) (1.887 - 1.792))/
        ((.000522)*Cos[-.7454*Sin[\[Theta]]*Cos[\[Phi]] + .6626*Cos[\[Theta]]]);
    b = (1 - Cos[.7454*Sin[\[Theta]]*Cos[\[Phi]] + .6626*Cos[\[Theta]]]^2)* 
        (1 -Cos[-.7454*Sin[\[Theta]]*Cos[\[Phi]] + .6626*Cos[\[Theta]]])^2;
    c = a*b;
    d = (Cos[c])^2

  SphericalPlot3D[f[polar, azimuthal], {polar, 0, \[Pi]}, {azimuthal, 0, 5}]

enter image description here

POSTED BY: Hans Milton

Perhaps the attached file will help.

POSTED BY: suvadip mandal
Reply to this discussion
Community posts can be styled and formatted using the Markdown syntax.
Reply Preview
or Discard

Group Abstract Group Abstract