0
|
6931 Views
|
3 Replies
|
0 Total Likes
View groups...
Share
GROUPS:

# SphericalPlot3D Manipulate

Posted 9 years ago
 a = ((3.14*.005) (1.887 - 1.792))/((.000522)* Cos[-.7454*Sin[\[Theta]]*Cos[\[Phi]] + .6626*Cos[\[Theta]]]); b = (1 - Cos[.7454*Sin[\[Theta]]*Cos[\[Phi]] + .6626* Cos[\[Theta]]]^2)*(1 - Cos[-.7454*Sin[\[Theta]]*Cos[\[Phi]] + .6626*Cos[\[Theta]]])^2; c = a*b; d = (Cos[c])^2; SphericalPlot3D[d, {\[Theta], 0, \[Pi]}, { \[Phi], 0, 2*\[Pi]}]  I have spherical 3D plot of some functions. Is there a way that I can manipulate this plot so that I vary theta from 0, pi/4 while I hold phi constant in the plot? Thank you in advance.
3 Replies
Sort By:
Posted 9 years ago
 SphericalPlot3D Manipulate
Posted 9 years ago
 Just to be clear, since there are more than one convention: In SphericalPlot3D the first angle argument is the "latitudinal" angle. And the second angle argument is the "longitudinal" angle. In the SphericalPlot3D case, the Mathematica documentation does not follow the most common uses of the greek letters theta and phi. f[\[Theta]_, \[Phi]_] := Module[ {a, b, c, d}, a = ((3.14*.005) (1.887 - 1.792))/ ((.000522)*Cos[-.7454*Sin[\[Theta]]*Cos[\[Phi]] + .6626*Cos[\[Theta]]]); b = (1 - Cos[.7454*Sin[\[Theta]]*Cos[\[Phi]] + .6626*Cos[\[Theta]]]^2)* (1 -Cos[-.7454*Sin[\[Theta]]*Cos[\[Phi]] + .6626*Cos[\[Theta]]])^2; c = a*b; d = (Cos[c])^2 ] SphericalPlot3D[f[polar, azimuthal], {polar, 0, \[Pi]}, {azimuthal, 0, 5}] Perhaps the attached file will help. Attachments: