Group Abstract Group Abstract

Message Boards Message Boards

0
|
3.5K Views
|
0 Replies
|
0 Total Likes
View groups...
Share
Share this post:

When pairs of terms are equal (MRB and MKB constants)

The following may be too elementary for constructive comments, but if not, then join in!

The MRB constant = Limit[Sum[(-1)^n n^(1/n),{n,1,2N}],N->Infinity]

In the domain of terms of the MRB constant ask, when are the pairs of terms equal?

•   Limit[x^(1/x) - (x + h)^(1/(x + h)) ,h->Infinity]  == 0 when x=1 because Limit[x^(1/x),x->Infinity]=1.
•   x^(1/x) - (x + 2)^(1/(x + 2)) == 0 when x=2 because 2^(1/2)=4^(1/4).
•   I think there are no more.

The MKB constant = Limit[Integrate[(-1)^x x^(1/x),{x,1,2N}],N->Infinity].

Compare the previous list to one using the domain of terms of the MKB constant, and ask when pairs of terms are equal?

•   For x != 0, x^(1/x) - (x + 0)^(1/(x + 0)) == 0 because, for example, Limit[x^(1/x) - (x + 10^-h)^(1/(x + 10^-h)), h -> Infinity]=0; see last line a special such x.
•   x^(1/x) - (x + 1)^(1/(x + 1)) == 0 when x= 2.2931662874… (By definition Foias’ second constant. See second constant at http://mathworld.wolfram.com/FoiasConstant.html).
•   x^(1/x) - (x + 2)^(1/(x + 2)) == 0 when x=2.
•   x^(1/x) - (x + 3)^(1/(x + 3)) == 0 when x= 1.801627661…
•   x^(1/x) - (x + 4)^(1/(x + 4)) == 0 when x= 1.6647142806…
•   x^(1/x) - (x + 10)^(1/(x + 10)) == 0 when x= 1.3295905071…
•   …
•   x^(1/x) - (x + 100)^(1/(x + 100)) == 0 when x= 1.00697415301373…
•   …
•   Limit[x^(1/x) - (x + h)^(1/(x + h)) ,h->Infinity]  == 0 when x=1 because Limit[x^(1/x),x->Infinity]=1, and that is where the sequence very slowly goes to.
•   Many more.
•   x^(1/x) - (x + 10^-1)^(1/(x +10^- 1)) == 0 when x 2.669048059942…
•   x^(1/x) - (x + 10^-2)^(1/(x + 10^-2)) == 0 when x= 2.713289492595…
•   x^(1/x) - (x + 10^-3)^(1/(x + 10^-3)) == 0 when x= 2.71778190…
•   x^(1/x) - (x + 4)^(1/(x +10^- 4)) == 0 when x= 2.71823182922…
•   …
•   x^(1/x) - (x + 10^-10)^(1/(x + 10^-10)) == 0, when x= 2.718281828…
•   …
•   Many more.
•   Limit[x^(1/x) - (x +10^- h)^(1/(x + 10^-h)) ,h->Infinity]  == 0 when x=E, because that is where the sequence very rapidly goes to!
Reply to this discussion
Community posts can be styled and formatted using the Markdown syntax.
Reply Preview
Attachments
Remove
or Discard