nm = 100;
Reap[For[v2 = -10., v2 < -9, v2 = v2 + 1/10.,
v[x_] := I*x^3 + I*v2*x^2;
c[m_, n_] := 1./Sqrt[2^(m + n)*Factorial[m]*Factorial[n]*Pi];
x1[m_,
n_] := (1/Sqrt[2.])*(Sqrt[n + 1]*KroneckerDelta[m, n + 1] +
Sqrt[n]*KroneckerDelta[m, n - 1]);
g[m_, n_] :=
c[m, n]*Integrate[
Exp[-x^2]*HermiteH[m, x]*x^3*HermiteH[n, x], {x, -Infinity,
Infinity}];
p2[m_,
n_] := .5*(2*n + 1)*KroneckerDelta[m, n] - .5*Sqrt[n*(n - 1)]*
KroneckerDelta[m, n - 2] - .5*Sqrt[(n + 1)*(n + 2)]*
KroneckerDelta[m, n + 2];
x3[m_,
n_] := (1/
Sqrt[8.])*(Sqrt[(n + 1.)*(n + 2)*(n + 3)]*
KroneckerDelta[m, n + 3.] +
Sqrt[n*(n - 1)*(n - 2)]*
KroneckerDelta[m, n - 3] + (3*(n + 1)*Sqrt[n + 1])*
KroneckerDelta[m, n + 1] +
3*n*Sqrt[n]*KroneckerDelta[m, n - 1]);
h[m_, n_] := p2[m, n] + I*x3[m, n] + I*v2*x[m, n];
mat = Table[h[m, n], {m, 0, nm}, {n, 0, nm}];
Eigenvalues[mat];
a = Sort[Re[Select[Eigenvalues[mat], Abs[Im[#]] < 10^-5 &]]];
j = Length[a];
b = a[[1 ;; 7]];
Sow[Join[{v2, Part[b, 1]}]]]][[2, 1]]