I have a problem, I want to run the function FullSimplify, but it seems that my computer does not have enough capacity of process, because it cannot give me any result after 4-5 hours. Could you give me any advice about how to enhance the use of process capacity of mathematica in my computer?
My System: Processor: Intel Core i7-3630QM CPU @ 2.40GHz RAM: 8GB (6.5GB usable) System type: 64-bit Operating System
FullSimplify[(Sec[\[Gamma]]^2 ((-\[Omega]x (-3 Sqrt[3] bb1^2 -
Sqrt[3] bb1 bb2 - 4 Sqrt[3] bb1 bb3 + 2 Sqrt[3] bb2 bb3 +
2 Sqrt[3] (bb1 + 2 bb2) (bb1 + 2 bb3) Cos[2 \[Gamma]] +
Sqrt[3] (bb1^2 + 3 bb1 bb3 + 2 bb2 bb3) Cos[4 \[Gamma]] -
6 bb1^2 Sin[2 \[Gamma]] - 12 bb1 bb3 Sin[2 \[Gamma]] +
3 bb1^2 Sin[4 \[Gamma]] + 6 bb1 bb2 Sin[4 \[Gamma]] +
3 bb1 bb3 Sin[4 \[Gamma]] +
6 bb2 bb3 Sin[
4 \[Gamma]]) - \[Omega]y Cos[\[Beta]] (3 bb1^2 +
3 bb1 bb2 + 6 bb1 bb3 + 6 bb2 bb3 -
6 bb1 (bb2 - bb3) Cos[2 \[Gamma]] -
3 (bb1 + 2 bb2) (bb1 + bb3) Cos[4 \[Gamma]] +
4 Sqrt[3] bb1^2 Sin[2 \[Gamma]] +
6 Sqrt[3] bb1 bb2 Sin[2 \[Gamma]] +
6 Sqrt[3] bb1 bb3 Sin[2 \[Gamma]] +
8 Sqrt[3] bb2 bb3 Sin[2 \[Gamma]] +
Sqrt[3] bb1^2 Sin[4 \[Gamma]] +
3 Sqrt[3] bb1 bb3 Sin[4 \[Gamma]] +
2 Sqrt[3]
bb2 bb3 Sin[
4 \[Gamma]])) Tan[\[Alpha]] + \[Omega]y (5 Sqrt[3]
bb1^2 + 7 Sqrt[3] bb1 bb2 + 4 Sqrt[3] bb1 bb3 +
2 Sqrt[3] bb2 bb3 +
2 Sqrt[3] (3 bb1^2 + 4 bb2 bb3 + 4 bb1 (bb2 + bb3)) Cos[
2 \[Gamma]] +
Sqrt[3] (bb1^2 + 3 bb1 bb3 + 2 bb2 bb3) Cos[4 \[Gamma]] +
6 bb1^2 Sin[2 \[Gamma]] + 12 bb1 bb2 Sin[2 \[Gamma]] +
3 bb1^2 Sin[4 \[Gamma]] + 6 bb1 bb2 Sin[4 \[Gamma]] +
3 bb1 bb3 Sin[4 \[Gamma]] +
6 bb2 bb3 Sin[4 \[Gamma]]) Tan[\[Beta]] -
Sec[\[Alpha]] (\[Omega]x Cos[\[Alpha]] Cos[\[Beta]] + \[Omega]y \
Sin[\[Alpha]] Sin[\[Beta]]) (3 bb1^2 + 3 bb1 bb2 + 6 bb1 bb3 +
6 bb2 bb3 - 6 bb1 (bb2 - bb3) Cos[2 \[Gamma]] -
3 (bb1 + 2 bb2) (bb1 + bb3) Cos[4 \[Gamma]] +
4 Sqrt[3] bb1^2 Sin[2 \[Gamma]] +
6 Sqrt[3] bb1 bb2 Sin[2 \[Gamma]] +
6 Sqrt[3] bb1 bb3 Sin[2 \[Gamma]] +
8 Sqrt[3] bb2 bb3 Sin[2 \[Gamma]] +
Sqrt[3] bb1^2 Sin[4 \[Gamma]] +
3 Sqrt[3] bb1 bb3 Sin[4 \[Gamma]] +
2 Sqrt[3] bb2 bb3 Sin[4 \[Gamma]]) Tan[\[Beta]]))/(4 (bb1 +
bb2 + bb3) (Sqrt[3] + Tan[\[Gamma]]) (3 +
Sqrt[3] Tan[\[Gamma]]))]