The number involves the MRB constant. It is
c = 0.316453098860696332954691288864309266518251...,
I've attached over 3014991 digits of it.
Here is the formula I used to compute it:
-(2*x - 3) - Log[m*Cos[x*ArcCos[3]]]/Log[-1 + Sqrt[2]] /. x -> 3014991
where m is 3014991 digits of the MRB constant.
I've found out that
Limit[(Sqrt[2] - 1)^(-(2*x - 3) - c)/Cos[x*ArcCos[3]], x -> Infinity]= MRB constant
.!!!
As examples, it is used in the following approximation.
In[131]:= (Sqrt[2] -
1)^(-7.31645309886069633295469128886430926651825135500119965205926\
4044803278048652714707)/Cos[5 ArcCos[3]]
Out[131]= \
0.18785963830947022338298272934951014890322206494050103351553632625518\
3736975759412
In[132]:= (Sqrt[2] -
1)^(-97.3164530988606963329546912888643092665182513550011996520592\
64044803278048652714707)/Cos[50 ArcCos[3]]
Out[132]= \
0.18785964246206712024851793405427323005590309490013878617200468408947\
7231564654981
,
where the MRB constant is
0.18785964246206712024851793405427323005590309490013878617200468408947\
7231564660213703296654433107496903842345856258019061231370094759226...
I see that we have the following here:
, where m is the MRB constant.
That is 2/(1 + Sqrt[2])^(3 - c) == m
.
Thus
That is
((m/2)(7 + 5Sqrt[2]))^(1/c) == 1 + Sqrt[2]
Attachments: