Group Abstract Group Abstract

Message Boards Message Boards

Determine m, n, o, and r along with three parameters (d, s, and w).

Posted 10 years ago

Hello All,

I'd like to ask you guys is there any way that I can determine m, n, o, and r at once via mathematica. m, n, o, and r should be 0 or 1, or between 0 and 1. Also, each equation of m, n, o, and r includes m, n, o, r, and three parameters (d, s, and w) where 0 < d < 1, 0=<s<=1, and 0 < w.

My goal is to determine a specific value for m, n, o, and r simultaneously, and possibly with a range of values of d, s, and w.

Can I use "FindInstance" or "NSolve" for this calculation? Then, how to enter a range of d, s and w in the below equation?

FindInstance or NSolve[
 m == 1/((-4.` + d^2)^2 (-1.` + d^2))
     0.25` d^2 (0.` + (
      1.` d^2 (-1.` + n)^2 (1.` - 1.` s)^2 w^2)/(-2.` + m + n)^2 + 
      1/(-2.` + m + n)
        4.` (-1.` + n) w (-2.` + s (2.` - 2.` w) + 2.` w + 
         d (1.` - 1.` s - 0.5` w + 0.5` s^2 w) + 
         d^2 (1.` - 1.` w + s (-1.` + 1.` w)))) && 
  o == (0.25` d^2 (-1.` + r) w (16.` - 8.` r - 16.` s + 8.` r s - 
        16.` w + 8.` r w + 16.` s w - 8.` r s w + 
        o (-8.` + s (8.` - 8.` w) + 8.` w) + 
        d (-8.` + 8.` s + 4.` w - 4.` s^2 w + 
           o (4.` - 4.` s - 2.` w + 2.` s^2 w) + 
           r (4.` - 4.` s - 2.` w + 2.` s^2 w)) + 
        d^2 (-8.` + 8.` s + 7.` w - 6.` s w - 1.` s^2 w + 
           r (4.` - 4.` s - 3.` w + 2.` s w + 1.` s^2 w) + 
           o (4.` - 4.` w + s (-4.` + 4.` w)))))/((-4.` + 
        d^2)^2 (-1.` + d^2) (-2.` + o + r)^2) && 
  r == 1/((-4.` + d^2)^2 (-1.` + d^2))
     0.25` d^2 (0.` + 
      1/(-2.` + o + r)
        4.` (-2.` + o (2.` - 2.` s) + 2.` s + 
         d (1.` - 1.` s + o (-1.` + 1.` s)) + 
         d^2 (1.` - 1.` s + o (-1.` + 1.` s))) w + ((
         8.` s (1.` - 1.` s + o (-1.` + 1.` s)))/(-2.` + o + r) + 
         d^2 (1.` + (
            1.` (-1.` + r)^2 (1.` - 1.` s)^2)/(-2.` + o + r)^2 + 
            2.` s - 
            3.` s^2 + ((-1 + r) (-2.` + 2.` s^2))/(-2 + o + 
             r)) + (d (4.` - 4.` o + 
              n^2 (4.440892098500627`*^-16 - 
                 4.440892098500627`*^-16 r) (1.` - 1.` s)^2 - 
              4.` s^2 + 4.` o s^2 + 
              m (-2.` + 2.` o + 
                 n (4.440892098500627`*^-16 - 
                    4.440892098500627`*^-16 r) (1.` - 1.` s)^2 + 
                 8.881784197001252`*^-16 s - 
                 8.881784197001252`*^-16 r s + 
                 1.9999999999999996` s^2 - 2.` o s^2 + 
                 4.440892098500626`*^-16 r s^2) + 
              n (-2.` + 2.` s^2 + o (2.` - 2.` s^2))))/((-2.` + m + 
              n) (-2.` + o + r))) w^2) && 
  n == 1/((-4.` + d^2)^2 (-1.` + d^2))
     0.25` d^2 (0.` + (
      1.` d^2 (-1.` + n)^2 (1.` - 1.` s)^2 w^2)/(-2.` + m + n)^2 + 
      1/(-2.` + m + n)
        4.` (-1.` + n) w (-2.` + s (2.` - 2.` w) + 2.` w + 
         d (1.` - 1.` s - 0.5` w + 0.5` s^2 w) + 
         d^2 (1.` - 1.` w + s (-1.` + 1.` w)))), {m, n, o, r}]  

Thank you for your helps!

POSTED BY: Genie Kim
2 Replies
Posted 10 years ago

Thanks for your reply. But, can you please provide a simple example? I do not really get it. Thank you!

POSTED BY: Genie Kim

You can put restrictions things like 0=<s<=1 right in the equation list.

POSTED BY: Daniel Lichtblau
Reply to this discussion
Community posts can be styled and formatted using the Markdown syntax.
Reply Preview
Attachments
Remove
or Discard