Hello All,
I'd like to ask you guys is there any way that I can determine m, n, o, and r at once via mathematica. m, n, o, and r should be 0 or 1, or between 0 and 1. Also, each equation of m, n, o, and r includes m, n, o, r, and three parameters (d, s, and w) where 0 < d < 1, 0=<s<=1, and 0 < w.
My goal is to determine a specific value for m, n, o, and r simultaneously, and possibly with a range of values of d, s, and w.
Can I use "FindInstance" or "NSolve" for this calculation? Then, how to enter a range of d, s and w in the below equation?
FindInstance or NSolve[
m == 1/((-4.` + d^2)^2 (-1.` + d^2))
0.25` d^2 (0.` + (
1.` d^2 (-1.` + n)^2 (1.` - 1.` s)^2 w^2)/(-2.` + m + n)^2 +
1/(-2.` + m + n)
4.` (-1.` + n) w (-2.` + s (2.` - 2.` w) + 2.` w +
d (1.` - 1.` s - 0.5` w + 0.5` s^2 w) +
d^2 (1.` - 1.` w + s (-1.` + 1.` w)))) &&
o == (0.25` d^2 (-1.` + r) w (16.` - 8.` r - 16.` s + 8.` r s -
16.` w + 8.` r w + 16.` s w - 8.` r s w +
o (-8.` + s (8.` - 8.` w) + 8.` w) +
d (-8.` + 8.` s + 4.` w - 4.` s^2 w +
o (4.` - 4.` s - 2.` w + 2.` s^2 w) +
r (4.` - 4.` s - 2.` w + 2.` s^2 w)) +
d^2 (-8.` + 8.` s + 7.` w - 6.` s w - 1.` s^2 w +
r (4.` - 4.` s - 3.` w + 2.` s w + 1.` s^2 w) +
o (4.` - 4.` w + s (-4.` + 4.` w)))))/((-4.` +
d^2)^2 (-1.` + d^2) (-2.` + o + r)^2) &&
r == 1/((-4.` + d^2)^2 (-1.` + d^2))
0.25` d^2 (0.` +
1/(-2.` + o + r)
4.` (-2.` + o (2.` - 2.` s) + 2.` s +
d (1.` - 1.` s + o (-1.` + 1.` s)) +
d^2 (1.` - 1.` s + o (-1.` + 1.` s))) w + ((
8.` s (1.` - 1.` s + o (-1.` + 1.` s)))/(-2.` + o + r) +
d^2 (1.` + (
1.` (-1.` + r)^2 (1.` - 1.` s)^2)/(-2.` + o + r)^2 +
2.` s -
3.` s^2 + ((-1 + r) (-2.` + 2.` s^2))/(-2 + o +
r)) + (d (4.` - 4.` o +
n^2 (4.440892098500627`*^-16 -
4.440892098500627`*^-16 r) (1.` - 1.` s)^2 -
4.` s^2 + 4.` o s^2 +
m (-2.` + 2.` o +
n (4.440892098500627`*^-16 -
4.440892098500627`*^-16 r) (1.` - 1.` s)^2 +
8.881784197001252`*^-16 s -
8.881784197001252`*^-16 r s +
1.9999999999999996` s^2 - 2.` o s^2 +
4.440892098500626`*^-16 r s^2) +
n (-2.` + 2.` s^2 + o (2.` - 2.` s^2))))/((-2.` + m +
n) (-2.` + o + r))) w^2) &&
n == 1/((-4.` + d^2)^2 (-1.` + d^2))
0.25` d^2 (0.` + (
1.` d^2 (-1.` + n)^2 (1.` - 1.` s)^2 w^2)/(-2.` + m + n)^2 +
1/(-2.` + m + n)
4.` (-1.` + n) w (-2.` + s (2.` - 2.` w) + 2.` w +
d (1.` - 1.` s - 0.5` w + 0.5` s^2 w) +
d^2 (1.` - 1.` w + s (-1.` + 1.` w)))), {m, n, o, r}]
Thank you for your helps!